Topic 7 Inverse Functions
7.1 Inverse Functions - Definition and Properties
Exercise 7.1 If f(x)=x5+x3+x,f(x)=x5+x3+x, find f−1(3)f−1(3) and (f−1)′(3)(f−1)′(3).
Solution.
Since f(f−1(x))=xf(f−1(x))=x, by change rule, we have (f−1)′(x)=1f′(f−1(x))(f−1)′(x)=1f′(f−1(x))
To find f′(f−1(3))f′(f−1(3)), we first find f′f′: f′(x)=(x5+x3+x)′=5x4+3x2+1f′(x)=(x5+x3+x)′=5x4+3x2+1 which is positive over its domain. So ff is a strictly increasing function and hence one-to-one.
By the definition of inverse function, f−1(3)f−1(3) is the solution to the equation f(x)=3f(x)=3. Note that f(1)=3f(1)=3, so f−1(3)=1f−1(3)=1.
Put the information together, we find that (f−1)′(3)=1f′(f−1(3))=1f′(1)=15+3+1=19.(f−1)′(3)=1f′(f−1(3))=1f′(1)=15+3+1=19.
Exercise 7.2 Find a formula for the inverse of the function f(x)=4x−12x+3f(x)=4x−12x+3.
Solution.
Let y=f−1(x)y=f−1(x). By the definition of f−1(x)f−1(x), we have x=f(f−1(x))=f(y)=4y−12y+3.x=f(f−1(x))=f(y)=4y−12y+3.
Solve for yy from this equation, we get y=f−1(x)=−3x+12x−4.y=f−1(x)=−3x+12x−4.
Exercise 7.3 Find a formula for the inverse of the function f(x)=1+√2+3xf(x)=1+√2+3x.
Solution.
To get the inverse function, solve for yy from the following equation x=1+√2+3y,x=1+√2+3y, we get f−1(x)=y=13(x−1)2−23.f−1(x)=y=13(x−1)2−23.
Exercise 7.4 Find an explicit formula for f−1f−1 where f(x)=x4+1,x≥0f(x)=x4+1,x≥0.
Solution.
Solve for yy from the following equation x=y4+1,x=y4+1, we get f−1(x)=y=4√x−1.f−1(x)=y=4√x−1.
Remark: Since the domain of ff is x≥0x≥0, the range of f−1f−1 is y≥0y≥0. That’s why we take y=4√x−1y=4√x−1.
Exercise 7.5 Find (f−1)′(a)(f−1)′(a), where f(x)=2x3+3x2+7x+4,a=4f(x)=2x3+3x2+7x+4,a=4.
Solution.
Solve f(x)=4f(x)=4, we get f−1(4)=x=0f−1(4)=x=0. As the derivative of ff is f′(x)=6x2+3x+7f′(x)=6x2+3x+7, apply the formula (f−1)′(x)=1f′(f−1(x)),(f−1)′(x)=1f′(f−1(x)), we get (f−1)′(4)=1f′(f−1(4))=1f′(0)=17.(f−1)′(4)=1f′(f−1(4))=1f′(0)=17.
Exercise 7.6 Find (f−1)′(a)(f−1)′(a), where f(x)=x3+3sinx+2cosx,a=2f(x)=x3+3sinx+2cosx,a=2.
Solution.
Solve f(x)=2f(x)=2, we get f−1(2)=x=0f−1(2)=x=0. As the derivative of ff is f′(x)=3x2+3cosx−2sinxf′(x)=3x2+3cosx−2sinx, apply the formula (f−1)′(x)=1f′(f−1(x)),(f−1)′(x)=1f′(f−1(x)), we get (f−1)′(2)=1f′(f−1(2))=1f′(0)=13.(f−1)′(2)=1f′(f−1(2))=1f′(0)=13.
Exercise 7.7 If gg is an increasing function such that g(2)=8g(2)=8 and g′(2)=5,g′(2)=5, calculate (g−1)′(8)(g−1)′(8).
Solution.
Since g(2)=8g(2)=8, g−1(8)=2g−1(8)=2. By the formula (f−1)′(x)=1f′(f−1(x)),(f−1)′(x)=1f′(f−1(x)), we get (g−1)′(8)=1g′(g−1(8))=1g′(2)=15.(g−1)′(8)=1g′(g−1(8))=1g′(2)=15.
Exercise 7.8 If f(x)=∫x3√1+t3dt,f(x)=∫x3√1+t3dt, find (f−1)′(0)(f−1)′(0).
Solution.
By Fundamental Theorem of Calculus, we know that f′(x)=√1+x3≥0f′(x)=√1+x3≥0 over its domain x≥−1x≥−1. Then f(x)f(x) is increasing over [−1,∞][−1,∞]. By Fundamental Theorem of Calculus, f(3)=∫33√1+t3dt=0f(3)=∫33√1+t3dt=0. So f−1(0)=3f−1(0)=3.
Therefore, (f−1)′(0)=1f′(f−1(0))=1f′(3)=1√28=√714.(f−1)′(0)=1f′(f−1(0))=1f′(3)=1√28=√714.
7.2 The Natural Logarithmic Function
Exercise 7.9 Find the limit limx→∞[ln(2+x)−ln(1+x)].limx→∞[ln(2+x)−ln(1+x)].
Solution.
limx→∞[ln(2+x)−ln(1+x)]=limx→∞ln(2+x1+x)=ln(limx→∞2+x1+x)=ln1=0limx→∞[ln(2+x)−ln(1+x)]=limx→∞ln(2+x1+x)=ln(limx→∞2+x1+x)=ln1=0
Remark: In the second last step, we used the trick that 2+x1+x=2x+11x+1.2+x1+x=2x+11x+1.
Exercise 7.10 Differentiate the function f(x)=√xlnx.f(x)=√xlnx.
Solution.
Apply the chain rule, we get f′(x)=(√xlnx)′=lnx2√x+√xx=√x(lnx+2)2x.f′(x)=(√xlnx)′=lnx2√x+√xx=√x(lnx+2)2x.
Exercise 7.11 Differentiate the function f(x)=ln(sin2x).f(x)=ln(sin2x).
Solution.
Apply the chain rule twice, we get f′(x)=1sin2x(sin2x)′=1sin2x(2sinx)(sinx)′=2tanx.f′(x)=1sin2x(sin2x)′=1sin2x(2sinx)(sinx)′=2tanx.
Exercise 7.12 Differentiate the function y=1lnx.y=1lnx.
Solution.
Apply the chain rule, we get f′(x)=−1(lnx)2(lnx)′=−1x(lnx)2.f′(x)=−1(lnx)2(lnx)′=−1x(lnx)2.
Exercise 7.13 Differentiate the function y=(lntanx)2.y=(lntanx)2.
Solution.
Apply the chain rule twice, we get f′(x)=2(lntanx)(lntanx)′=2(lntanx)tanx(tanx)′=2sec2x(lntanx)tanx.f′(x)=2(lntanx)(lntanx)′=2(lntanx)tanx(tanx)′=2sec2x(lntanx)tanx.
Exercise 7.14 Find f′′(e)f′′(e), where f(x)=lnxx.f(x)=lnxx.
Solution.
Apply the quotient rule and simplify, we get f′(x)=1−lnxx2f′(x)=1−lnxx2
Apply the quotient rule again and simplify, we get f″(x)=2lnx−3x3f′′(x)=2lnx−3x3
Therefore, f″(e)=2lne−3e3=2⋅1−3e3=−1e3.f′′(e)=2lne−3e3=2⋅1−3e3=−1e3.
Exercise 7.15 Use logarithmic differentiation to find the derivative of the function y=√x−1x4+1.y=√x−1x4+1.
Solution.
Apply lnln to both sides, we get lny=ln(√x−1x4+1)=12ln(x−1)−12ln(x4+1).lny=ln(√x−1x4+1)=12ln(x−1)−12ln(x4+1).
Differentiate both sides, we get 1y⋅y′=12(x−1)−4x32(x4+1).1y⋅y′=12(x−1)−4x32(x4+1).
Multiply both sides by y=√x−1x4+1y=√x−1x4+1, we get y′=(12(x−1)−4x32(x4+1))√x−1x4+1y′=(12(x−1)−4x32(x4+1))√x−1x4+1
Exercise 7.16 Evaluate the integral ∫423xdx.∫423xdx.
Solution.
∫423xdx=3∫421xdx=3(ln|x|)|42=3(ln4−ln2)=3ln2.∫423xdx=3∫421xdx=3(ln|x|)|42=3(ln4−ln2)=3ln2.
Exercise 7.17 Evaluate the integral ∫21dt8−3t.∫21dt8−3t.
Solution.
We find the anti-derivative first: ∫dt8−3tu=8−3t=−13∫duu=−13(ln|u|)+C=−13(ln|8−3t|)+C.∫dt8−3tu=8−3t=−13∫duu=−13(ln|u|)+C=−13(ln|8−3t|)+C.
By Fundamental Theorem of Calculus, we get ∫21dt8−3t=−13(ln|8−3⋅2|−ln|8−3⋅1|)=ln5−ln23.∫21dt8−3t=−13(ln|8−3⋅2|−ln|8−3⋅1|)=ln5−ln23.
Exercise 7.18 Evaluate the integral ∫cosx2+sinxdx.∫cosx2+sinxdx.
Solution.
Let u=2+sinxu=2+sinx. We find that du=cosxdxdu=cosxdx. Then ∫cosx2+sinxdx=∫1udu=ln|u|+C=ln(2+sinx)+C.∫cosx2+sinxdx=∫1udu=ln|u|+C=ln(2+sinx)+C.
Remark: In the last step, we remove the absolute value sign because 2+sinx≥12+sinx≥1.
7.3 The Natural Exponential Function
Exercise 7.19 Find the domain of the function f(x)=√3−e2x.f(x)=√3−e2x.
Solution.
The domain of the function is given by the inequality 3−e2x≥0,3−e2x≥0, which is equivalent to e2x≥3.e2x≥3.
As the natural logarithmic function is strict increasing, take lnln of both sides, we get 2x≥ln3x≥12ln3.2x≥ln3x≥12ln3.
Exercise 7.20 Find the limit limx→∞(e−2xcosx).limx→∞(e−2xcosx).
Solution.
Since −1≤cosx≤1−1≤cosx≤1 and e−2x>0e−2x>0, we have the following inequality −e−2x≤e−2xcosx≤e−2x.−e−2x≤e−2xcosx≤e−2x.
By Squeeze theorem and the fact that limx→∞e−2x=0limx→∞e−2x=0, we know that limx→∞(e−2xcosx)=0.limx→∞(e−2xcosx)=0.
Exercise 7.21 Differentiate the function f(t)=sin(et)+esint.f(t)=sin(et)+esint.
Solution.
Apply chain rule to both terms: f′(x)=(sin(et))′+(esint)′=cos(et)et+esint(cost)=etcos(et)+esintcost.f′(x)=(sin(et))′+(esint)′=cos(et)et+esint(cost)=etcos(et)+esintcost.
Exercise 7.22 Differentiate the function y=cos(1−e2x1+e2x).y=cos(1−e2x1+e2x).
Solution.
Note that 1−e2x1+e2x=21+e2x−1.1−e2x1+e2x=21+e2x−1.
Apply chain rule three times: y′=−sin(1−e2x1+e2x)⋅(21+e2x−1)′=−sin(1−e2x1+e2x)⋅(−2(1+e2x)2)⋅(1+e2x)′=sin(1−e2x1+e2x)⋅(2(1+e2x)2)⋅2e2x=4e2x(1+e2x)2sin(1−e2x1+e2x).y′=−sin(1−e2x1+e2x)⋅(21+e2x−1)′=−sin(1−e2x1+e2x)⋅(−2(1+e2x)2)⋅(1+e2x)′=sin(1−e2x1+e2x)⋅(2(1+e2x)2)⋅2e2x=4e2x(1+e2x)2sin(1−e2x1+e2x).
Exercise 7.23 Find an equation of the tangent line to the curve xey+yex=1xey+yex=1 at the point (0,1)(0,1).
Solution.
The slope of the tangent line is given by y′(0)y′(0). So we first need to find y′(x)y′(x).
Differentiate both side with respect to xx, we get ey+xeyy′+y′ex+yex=0.ey+xeyy′+y′ex+yex=0.
Solve for y′y′, we obtain y′=−ey+yexxey+exy′=−ey+yexxey+ex
Plug (0,1)(0,1) into the right hand side, we get the slope of the tangent line m=y′(0)=−e+11=−(e+1).m=y′(0)=−e+11=−(e+1).
So the tangent line is defined by y=−(e+1)x+1.y=−(e+1)x+1.
Exercise 7.24 Find the absolute maximum value of the function f(x)=x−ex.f(x)=x−ex.
Solution.
The function ff is differentiable over all real numbers. To find the absolute maximum, we study the monotonicity of the function.
The first derivative is f′(x)=1−exf′(x)=1−ex. Since ex>1ex>1 for x>0x>0 and ex<1ex<1 for x<0x<0, we know that f′(x)<0f′(x)<0 for x>0x>0 and f′(x)>0f′(x)>0 for x<0x<0.
The information shows that f(x)f(x) is increasing over (−∞,0)(−∞,0) and decreasing over (0,∞)(0,∞).
Thus, f(x)f(x) has a maximum f(0)=0−e0=−1f(0)=0−e0=−1.
Exercise 7.25 Evaluate the integral ∫ex√1+exdx.∫ex√1+exdx.
Solution.
∫ex√1+exdx=∫√uduu=1+ex=23u32+C=23(1+ex)32+C.∫ex√1+exdx=∫√uduu=1+ex=23u32+C=23(1+ex)32+C.
Exercise 7.26 Evaluate the integral ∫(ex+e−x)2dx.∫(ex+e−x)2dx.
Solution.
∫(ex+e−x)2dx=∫(e2x+2+e−2x)dx=12e2x+2x−12e−2x+C.∫(ex+e−x)2dx=∫(e2x+2+e−2x)dx=12e2x+2x−12e−2x+C.
7.4 General Logarithmic and Exponential Functions
Exercise 7.27 Differentiate the function f(x)=x5+5x.f(x)=x5+5x.
Solution.
f′(x)=5x+5xln5.f′(x)=5x+5xln5.
Exercise 7.28 Differentiate the function g(x)=xsin(2x).g(x)=xsin(2x).
Solution.
f′(x)=sin(2x)+xcos(2x)(2x)′=sin(2x)+x2xcos(2x)ln2.f′(x)=sin(2x)+xcos(2x)(2x)′=sin(2x)+x2xcos(2x)ln2.
Exercise 7.29 Differentiate the function f(x)=log5(xex).f(x)=log5(xex).
Solution.
f′(x)=1ln5(lnx+x)′=1ln5(1x+1)=x+1xln5.f′(x)=1ln5(lnx+x)′=1ln5(1x+1)=x+1xln5.
Exercise 7.30 Differentiate the function y=xcosx.y=xcosx.
Solution.
f′(x)=(ecosxlnx)′=xcosx(cosxlnx)′=xcosx(−sinxlnx+cosxx)=(cosx−xsinxlnx)xcosxx.f′(x)=(ecosxlnx)′=xcosx(cosxlnx)′=xcosx(−sinxlnx+cosxx)=(cosx−xsinxlnx)xcosxx.
Exercise 7.31 Evaluate the integral ∫(x5+5x)dx.∫(x5+5x)dx.
Solution.
∫(x5+5x)dx=x66+5xln5+C.∫(x5+5x)dx=x66+5xln5+C.
Exercise 7.32 Evaluate the integral ∫log10xxdx.∫log10xxdx.
Solution.
∫log10xxdx=1ln10∫lnxxdx=1ln10∫lnx d(lnx)u=lnx=(lnx)22ln10+C.∫log10xxdx=1ln10∫lnxxdx=1ln10∫lnx d(lnx)u=lnx=(lnx)22ln10+C.
Exercise 7.33 Evaluate the integral ∫102x2x+1dx.∫102x2x+1dx.
Solution.
Let u=2x+1u=2x+1, then du=2xln2dxdu=2xln2dx. Therefore, ∫2x2x+1dx=1ln2∫1udu=lnuln2+C=ln(2x+1)ln2+C.∫2x2x+1dx=1ln2∫1udu=lnuln2+C=ln(2x+1)ln2+C.
By FTC, ∫102x2x+1dx=ln(21+1)ln2−ln(20+1)ln2=ln3−ln2ln2.∫102x2x+1dx=ln(21+1)ln2−ln(20+1)ln2=ln3−ln2ln2.
Exercise 7.34 Find the area of the region bounded by the curves y=2xy=2x, y=5x,x=−1,y=5x,x=−1, and x=1x=1
Solution.
Note that 5x>2x5x>2x for x>0x>0 and 2x>5x2x>5x for x<0x<0
So the area of the region is given by ∫0−1(2x−5x)dx+∫10(5x−2x)dx=(2xln2−5xln5)|0−1+(5xln5−2xln2)|10=165ln2−12ln5ln2ln5∫0−1(2x−5x)dx+∫10(5x−2x)dx=(2xln2−5xln5)∣∣∣0−1+(5xln5−2xln2)∣∣∣10=165ln2−12ln5ln2ln5
7.5 Exponential Growth and Decay
Exercise 7.35 A sample of tritium-3 decayed to 94.5% of its original amount after a year.
- What is the half-life of tritium-3?
- How long would it take the sample to decay to 20% of its original amount?
Solution.
The decay of tritium-3 can be modeled by the function m(t)=m(0)ekt.m(t)=m(0)ekt.
We know that m(1)=0.945m(0)m(1)=0.945m(0) which implies that ek=0.945ek=0.945. So k=ln(0.945)k=ln(0.945).
The half-life is the solution of the equation 0.5=etln(0.945).0.5=etln(0.945). Taking lnln of both sides and solve for tt, we get the half-life is ln(0.5)ln(0.945)≈12.25ln(0.5)ln(0.945)≈12.25 years.
Similarly, it takes the sample ln(0.2)ln(0.945)≈28.45ln(0.2)ln(0.945)≈28.45 years to decay to 20%.
Exercise 7.36 A curve passes through the point (0,5)(0,5) and has the property that the slope of the curve at every point PP is twice the yy-coordinate of PP. What is the equation of the curve?
Solution.
The slope of the line is given by the derivative y′y′. From the given information, we know that y′=2yy′=2y which has the solution y(x)=Ce2xy(x)=Ce2x.
Since the point (0,5)(0,5) is on the curve, we have 5=y(0)=Ce05=y(0)=Ce0. So C=5C=5 and the equation of the curve is y=5e2x.y=5e2x.
Exercise 7.37 A freshly brewed cup of tea has temperature 97∘∘C. The temperature of the room is 22∘∘C. After 10 minutes, the temperature of the coffee is 47∘∘C. Find the temperature of the coffee after 20 minutes. By Newton’s cooling law, the temperature of the coffee satisfies the equation y′(t)=k(y(t)−R)y′(t)=k(y(t)−R), where RR is the room temperature.
Solution.
Since R=22R=22 and y(0)=97y(0)=97, by Newton’s cooling law, the temperature of the coffee can be modeled by y(t)=(98−23)ekt+23=75ekt+23y(t)=(98−23)ekt+23=75ekt+23.
We also know that y(10)=47y(10)=47 which gives us an equation 75e10k+22=47.75e10k+22=47.
Solve for kk, we get t=−ln310.t=−ln310.
Therefore, y(20)=75e−2ln3+22=75⋅(eln3)−2+22=913≈30.3∘C.y(20)=75e−2ln3+22=75⋅(eln3)−2+22=913≈30.3∘C.
Exercise 7.38 How long will it take an investment to double in value if the interest rate is 6% compounded continuously?
Solution.
The balance function of an investment with an annual rate 6% compounded continuous is given by B(t)=Pe0.06t.B(t)=Pe0.06t.
When the balance is doubled, it satisfies the equation 2P=Pe0.06.2P=Pe0.06.
Solve the equation, we get that it takes about t=ln2/0.06≈11.55t=ln2/0.06≈11.55 years that the investment will be doubled.
7.6 Inverse Trigonometric Functions
Exercise 7.39 Find the derivative of the function
y=tan−1(x2)y=tan−1(x2)
Solution.
By the chain rule, we get y′=2x1+x4.y′=2x1+x4.
Exercise 7.40 Find the derivative of the function
y=sin−1(2x+1)y=sin−1(2x+1)
Solution.
By the chain rule, we get y′=2√1−(2x+1)2.y′=2√1−(2x+1)2.
Exercise 7.41 Find the derivative of the function
f(θ)=arcsin√sinθf(θ)=arcsin√sinθ
Solution.
Apply the chain rule twice, we get y′=1√1−sinθ⋅12√sinθ⋅cosθ.y′=1√1−sinθ⋅12√sinθ⋅cosθ.
Exercise 7.42 Find the derivative of the function
y=arctan√1−x1+xy=arctan√1−x1+x
Solution.
Note that 1−x1+x=21+x−11−x1+x=21+x−1.
Apply the chain rule three times, we get y′=11+1−x1+x⋅12√1−x1+x⋅(−2(x+1)2)=−12(x+1)√1+x1−x.y′=11+1−x1+x⋅12√1−x1+x⋅(−2(x+1)2)=−12(x+1)√1+x1−x.
Exercise 7.43 Evaluate the integral
∫√31/√381+x2dx∫√31/√381+x2dx
Solution.
∫√31/√381+x2dx=8arctan(x)|√31/√3=8(π3−π6)=4π3.∫√31/√381+x2dx=8arctan(x)∣∣√31/√3=8(π3−π6)=4π3.
Exercise 7.44 Evaluate the integral
∫1/20sin−1x√1−x2dx∫1/20sin−1x√1−x2dx
Solution.
Let u=sin−1xu=sin−1x. Then ∫sin−1x√1−x2dx=∫udu=12u2+C=12(sin−1x)2+C.∫sin−1x√1−x2dx=∫udu=12u2+C=12(sin−1x)2+C.
Therefore, ∫1/20sin−1x√1−x2dx=12(sin−1(1/2))2−12(sin−10)2=12(π6)2=π72.∫1/20sin−1x√1−x2dx=12(sin−1(1/2))2−12(sin−10)2=12(π6)2=π72.
Exercise 7.45 Evaluate the integral
∫π/20sinx1+cos2xdx∫π/20sinx1+cos2xdx
Solution.
Let u=cosxu=cosx. Then ∫sinx1+cos2xdx=∫11+u2du=arctan(u)+C=arctan(cosx)+C.∫sinx1+cos2xdx=∫11+u2du=arctan(u)+C=arctan(cosx)+C.
Therefore, ∫π/20sinx1+cos2xdx=arctan(cos(π/2))−arctan(cos0)=arctan(0)−arctan(1)=−π4.∫π/20sinx1+cos2xdx=arctan(cos(π/2))−arctan(cos0)=arctan(0)−arctan(1)=−π4.
Exercise 7.46 Evaluate the integral
∫e2x√1−e4xdx∫e2x√1−e4xdx
Solution.
Let u=e2xu=e2x. Then du=2e2xdxdu=2e2xdx and ∫e2x√1−e4xdx=12∫1√1−u2du=12arcsin(u)+C=12arcsin(e2x)+C.∫e2x√1−e4xdx=12∫1√1−u2du=12arcsin(u)+C=12arcsin(e2x)+C.
Exercise 7.47 Find the limit
limx→∞arccos(1+x21+2x2)limx→∞arccos(1+x21+2x2)
Solution.
Because cosxcosx is continuous over its domain [-1, 1] and 0≤1+x21+2x2≤10≤1+x21+2x2≤1.
Then limx→∞arccos(1+x21+2x2)=arccos(limx→∞1+x21+2x2)=arccos(12)=π3.limx→∞arccos(1+x21+2x2)=arccos(limx→∞1+x21+2x2)=arccos(12)=π3.
Exercise 7.48 Find the limit
limx→0+tan−1(lnx)limx→0+tan−1(lnx)
Solution.
Because limx→0+lnx=−∞limx→0+lnx=−∞ and limx→−∞tan−1x=−π2limx→−∞tan−1x=−π2.
Then limx→0+tan−1(lnx)=−π2.limx→0+tan−1(lnx)=−π2.
7.7 L’hospital’s Rule
Exercise 7.49 Evaluate the limit if it exist. Otherwise, explain why.
limx→1x3−2x2+1x3−1limx→1x3−2x2+1x3−1
Solution.
Because limx→1(x3−2x2+1)=0limx→1(x3−2x2+1)=0 and limx→1(x3−1)=0limx→1(x3−1)=0. Moreover, limx→1(x3−2x2+1)′(x3−1)′=limx→13x2−4x3x2=3−43=−13.limx→1(x3−2x2+1)′(x3−1)′=limx→13x2−4x3x2=3−43=−13.
By L’Hospital’s rule, limx→1x3−2x2+1x3−1=limx→1(x3−2x2+1)′(x3−1)′=−13.limx→1x3−2x2+1x3−1=limx→1(x3−2x2+1)′(x3−1)′=−13.
Exercise 7.50 Evaluate the limit if it exist. Otherwise, explain why.
limx→0sin4xtan5xlimx→0sin4xtan5x
Solution.
Since limx→0sin4x=0limx→0sin4x=0 and limx→0cos4x=0limx→0cos4x=0, and limx→0(sin4x)′(tan5x)′=limx→04cos4x5sec25x=45.limx→0(sin4x)′(tan5x)′=limx→04cos4x5sec25x=45.
By L’Hospital’s rule, limx→0sin4xtan5x=limx→0(sin4x)′(tan5x)′=45.limx→0sin4xtan5x=limx→0(sin4x)′(tan5x)′=45.
Exercise 7.51 Evaluate the limit if it exist. Otherwise, explain why.
limθ→π/21−sinθ1+cos2θlimθ→π/21−sinθ1+cos2θ
Solution.
We will apply L’Hospital’s rule twice.
limθ→π/21−sinθ1+cos2θ=limθ→π/2−cosθ−2sin2θ=limθ→π/2−sinθ4cos2θ=−1−4=14.limθ→π/21−sinθ1+cos2θ=limθ→π/2−cosθ−2sin2θ=limθ→π/2−sinθ4cos2θ=−1−4=14.
Exercise 7.52 Evaluate the limit if it exist. Otherwise, explain why.
limx→0sin−1xxlimx→0sin−1xx
Solution.
We may apply L’Hospital’s rule.
limx→0sin−1xx=limθ→01√1−x2=1.limx→0sin−1xx=limθ→01√1−x2=1.
Exercise 7.53 Evaluate the limit if it exist. Otherwise, explain why.
limx→∞xsin(π/x)limx→∞xsin(π/x)
Solution.
First write the expression as a quotient and then apply L’Hospital’s rule.
limx→∞xsin(π/x)=limx→∞sin(π/x)1/x=limx→∞cos(π/x)⋅(π⋅(1/x)′)(1/x)′=limx→∞πcos(π/x)=π.limx→∞xsin(π/x)=limx→∞sin(π/x)1/x=limx→∞cos(π/x)⋅(π⋅(1/x)′)(1/x)′=limx→∞πcos(π/x)=π.
Exercise 7.54 Evaluate the limit if it exist. Otherwise, explain why.
limx→0+(1x−1ex−1)limx→0+(1x−1ex−1)
Solution.
First write the expression as a quotient and then apply L’Hospital’s rule twice.
limx→0+(1x−1ex−1)=limx→0+ex−x−1x(ex−1)=limx→0+ex−1(ex−1)+xex=limx→0+ex2ex+xex=12.limx→0+(1x−1ex−1)=limx→0+ex−x−1x(ex−1)=limx→0+ex−1(ex−1)+xex=limx→0+ex2ex+xex=12.
Exercise 7.55 Evaluate the limit if it exist. Otherwise, explain why.
limx→∞(x−lnx)limx→∞(x−lnx)
Solution.
An estimate using the identity ln(ex)=xln(ex)=x shows that the limit is ∞∞. To verify that, we factor out xx. Note that limx→∞lnxx=limx→∞1x=0.limx→∞lnxx=limx→∞1x=0.
Then limx→∞(x−lnx)=limx→∞x(1−lnxx)=∞.limx→∞(x−lnx)=limx→∞x(1−lnxx)=∞.
Exercise 7.56 Find the limit
limx→∞x1/xlimx→∞x1/x
Solution.
Using the identity ln(ex)=xln(ex)=x, we may rewrite x1/xx1/x as x1/x=elnxx.x1/x=elnxx.
Since limx→∞lnxx=limx→∞1x=0.limx→∞lnxx=limx→∞1x=0.
Then limx→∞x1/x=elimx→∞lnxx=e0=1.limx→∞x1/x=elimx→∞lnxx=e0=1.