Topic 7 Inverse Functions

7.1 Inverse Functions - Definition and Properties

Exercise 7.1 If f(x)=x5+x3+x,f(x)=x5+x3+x, find f1(3)f1(3) and (f1)(3)(f1)(3).

Solution.

Since f(f1(x))=xf(f1(x))=x, by change rule, we have (f1)(x)=1f(f1(x))(f1)(x)=1f(f1(x))

To find f(f1(3))f(f1(3)), we first find ff: f(x)=(x5+x3+x)=5x4+3x2+1f(x)=(x5+x3+x)=5x4+3x2+1 which is positive over its domain. So ff is a strictly increasing function and hence one-to-one.

By the definition of inverse function, f1(3)f1(3) is the solution to the equation f(x)=3f(x)=3. Note that f(1)=3f(1)=3, so f1(3)=1f1(3)=1.

Put the information together, we find that (f1)(3)=1f(f1(3))=1f(1)=15+3+1=19.(f1)(3)=1f(f1(3))=1f(1)=15+3+1=19.

Exercise 7.2 Find a formula for the inverse of the function f(x)=4x12x+3f(x)=4x12x+3.

Solution.

Let y=f1(x)y=f1(x). By the definition of f1(x)f1(x), we have x=f(f1(x))=f(y)=4y12y+3.x=f(f1(x))=f(y)=4y12y+3.

Solve for yy from this equation, we get y=f1(x)=3x+12x4.y=f1(x)=3x+12x4.

Exercise 7.3 Find a formula for the inverse of the function f(x)=1+2+3xf(x)=1+2+3x.

Solution.

To get the inverse function, solve for yy from the following equation x=1+2+3y,x=1+2+3y, we get f1(x)=y=13(x1)223.f1(x)=y=13(x1)223.

Exercise 7.4 Find an explicit formula for f1f1 where f(x)=x4+1,x0f(x)=x4+1,x0.

Solution.

Solve for yy from the following equation x=y4+1,x=y4+1, we get f1(x)=y=4x1.f1(x)=y=4x1.

Remark: Since the domain of ff is x0x0, the range of f1f1 is y0y0. That’s why we take y=4x1y=4x1.

Exercise 7.5 Find (f1)(a)(f1)(a), where f(x)=2x3+3x2+7x+4,a=4f(x)=2x3+3x2+7x+4,a=4.

Solution.

Solve f(x)=4f(x)=4, we get f1(4)=x=0f1(4)=x=0. As the derivative of ff is f(x)=6x2+3x+7f(x)=6x2+3x+7, apply the formula (f1)(x)=1f(f1(x)),(f1)(x)=1f(f1(x)), we get (f1)(4)=1f(f1(4))=1f(0)=17.(f1)(4)=1f(f1(4))=1f(0)=17.

Exercise 7.6 Find (f1)(a)(f1)(a), where f(x)=x3+3sinx+2cosx,a=2f(x)=x3+3sinx+2cosx,a=2.

Solution.

Solve f(x)=2f(x)=2, we get f1(2)=x=0f1(2)=x=0. As the derivative of ff is f(x)=3x2+3cosx2sinxf(x)=3x2+3cosx2sinx, apply the formula (f1)(x)=1f(f1(x)),(f1)(x)=1f(f1(x)), we get (f1)(2)=1f(f1(2))=1f(0)=13.(f1)(2)=1f(f1(2))=1f(0)=13.

Exercise 7.7 If gg is an increasing function such that g(2)=8g(2)=8 and g(2)=5,g(2)=5, calculate (g1)(8)(g1)(8).

Solution.

Since g(2)=8g(2)=8, g1(8)=2g1(8)=2. By the formula (f1)(x)=1f(f1(x)),(f1)(x)=1f(f1(x)), we get (g1)(8)=1g(g1(8))=1g(2)=15.(g1)(8)=1g(g1(8))=1g(2)=15.

Exercise 7.8 If f(x)=x31+t3dt,f(x)=x31+t3dt, find (f1)(0)(f1)(0).

Solution.

By Fundamental Theorem of Calculus, we know that f(x)=1+x30f(x)=1+x30 over its domain x1x1. Then f(x)f(x) is increasing over [1,][1,]. By Fundamental Theorem of Calculus, f(3)=331+t3dt=0f(3)=331+t3dt=0. So f1(0)=3f1(0)=3.

Therefore, (f1)(0)=1f(f1(0))=1f(3)=128=714.(f1)(0)=1f(f1(0))=1f(3)=128=714.

7.2 The Natural Logarithmic Function

Exercise 7.9 Find the limit limx[ln(2+x)ln(1+x)].limx[ln(2+x)ln(1+x)].

Solution.

limx[ln(2+x)ln(1+x)]=limxln(2+x1+x)=ln(limx2+x1+x)=ln1=0limx[ln(2+x)ln(1+x)]=limxln(2+x1+x)=ln(limx2+x1+x)=ln1=0

Remark: In the second last step, we used the trick that 2+x1+x=2x+11x+1.2+x1+x=2x+11x+1.

Exercise 7.10 Differentiate the function f(x)=xlnx.f(x)=xlnx.

Solution.

Apply the chain rule, we get f(x)=(xlnx)=lnx2x+xx=x(lnx+2)2x.f(x)=(xlnx)=lnx2x+xx=x(lnx+2)2x.

Exercise 7.11 Differentiate the function f(x)=ln(sin2x).f(x)=ln(sin2x).

Solution.

Apply the chain rule twice, we get f(x)=1sin2x(sin2x)=1sin2x(2sinx)(sinx)=2tanx.f(x)=1sin2x(sin2x)=1sin2x(2sinx)(sinx)=2tanx.

Exercise 7.12 Differentiate the function y=1lnx.y=1lnx.

Solution.

Apply the chain rule, we get f(x)=1(lnx)2(lnx)=1x(lnx)2.f(x)=1(lnx)2(lnx)=1x(lnx)2.

Exercise 7.13 Differentiate the function y=(lntanx)2.y=(lntanx)2.

Solution.

Apply the chain rule twice, we get f(x)=2(lntanx)(lntanx)=2(lntanx)tanx(tanx)=2sec2x(lntanx)tanx.f(x)=2(lntanx)(lntanx)=2(lntanx)tanx(tanx)=2sec2x(lntanx)tanx.

Exercise 7.14 Find f(e)f(e), where f(x)=lnxx.f(x)=lnxx.

Solution.

Apply the quotient rule and simplify, we get f(x)=1lnxx2f(x)=1lnxx2

Apply the quotient rule again and simplify, we get f(x)=2lnx3x3f′′(x)=2lnx3x3

Therefore, f(e)=2lne3e3=213e3=1e3.f′′(e)=2lne3e3=213e3=1e3.

Exercise 7.15 Use logarithmic differentiation to find the derivative of the function y=x1x4+1.y=x1x4+1.

Solution.

Apply lnln to both sides, we get lny=ln(x1x4+1)=12ln(x1)12ln(x4+1).lny=ln(x1x4+1)=12ln(x1)12ln(x4+1).

Differentiate both sides, we get 1yy=12(x1)4x32(x4+1).1yy=12(x1)4x32(x4+1).

Multiply both sides by y=x1x4+1y=x1x4+1, we get y=(12(x1)4x32(x4+1))x1x4+1y=(12(x1)4x32(x4+1))x1x4+1

Exercise 7.16 Evaluate the integral 423xdx.423xdx.

Solution.

423xdx=3421xdx=3(ln|x|)|42=3(ln4ln2)=3ln2.423xdx=3421xdx=3(ln|x|)|42=3(ln4ln2)=3ln2.

Exercise 7.17 Evaluate the integral 21dt83t.21dt83t.

Solution.

We find the anti-derivative first: dt83tu=83t=13duu=13(ln|u|)+C=13(ln|83t|)+C.dt83tu=83t=13duu=13(ln|u|)+C=13(ln|83t|)+C.

By Fundamental Theorem of Calculus, we get 21dt83t=13(ln|832|ln|831|)=ln5ln23.21dt83t=13(ln|832|ln|831|)=ln5ln23.

Exercise 7.18 Evaluate the integral cosx2+sinxdx.cosx2+sinxdx.

Solution.

Let u=2+sinxu=2+sinx. We find that du=cosxdxdu=cosxdx. Then cosx2+sinxdx=1udu=ln|u|+C=ln(2+sinx)+C.cosx2+sinxdx=1udu=ln|u|+C=ln(2+sinx)+C.

Remark: In the last step, we remove the absolute value sign because 2+sinx12+sinx1.

7.3 The Natural Exponential Function

Exercise 7.19 Find the domain of the function f(x)=3e2x.f(x)=3e2x.

Solution.

The domain of the function is given by the inequality 3e2x0,3e2x0, which is equivalent to e2x3.e2x3.

As the natural logarithmic function is strict increasing, take lnln of both sides, we get 2xln3x12ln3.2xln3x12ln3.

Exercise 7.20 Find the limit limx(e2xcosx).limx(e2xcosx).

Solution.

Since 1cosx11cosx1 and e2x>0e2x>0, we have the following inequality e2xe2xcosxe2x.e2xe2xcosxe2x.

By Squeeze theorem and the fact that limxe2x=0limxe2x=0, we know that limx(e2xcosx)=0.limx(e2xcosx)=0.

Exercise 7.21 Differentiate the function f(t)=sin(et)+esint.f(t)=sin(et)+esint.

Solution.

Apply chain rule to both terms: f(x)=(sin(et))+(esint)=cos(et)et+esint(cost)=etcos(et)+esintcost.f(x)=(sin(et))+(esint)=cos(et)et+esint(cost)=etcos(et)+esintcost.

Exercise 7.22 Differentiate the function y=cos(1e2x1+e2x).y=cos(1e2x1+e2x).

Solution.

Note that 1e2x1+e2x=21+e2x1.1e2x1+e2x=21+e2x1.

Apply chain rule three times: y=sin(1e2x1+e2x)(21+e2x1)=sin(1e2x1+e2x)(2(1+e2x)2)(1+e2x)=sin(1e2x1+e2x)(2(1+e2x)2)2e2x=4e2x(1+e2x)2sin(1e2x1+e2x).y=sin(1e2x1+e2x)(21+e2x1)=sin(1e2x1+e2x)(2(1+e2x)2)(1+e2x)=sin(1e2x1+e2x)(2(1+e2x)2)2e2x=4e2x(1+e2x)2sin(1e2x1+e2x).

Exercise 7.23 Find an equation of the tangent line to the curve xey+yex=1xey+yex=1 at the point (0,1)(0,1).

Solution.

The slope of the tangent line is given by y(0)y(0). So we first need to find y(x)y(x).

Differentiate both side with respect to xx, we get ey+xeyy+yex+yex=0.ey+xeyy+yex+yex=0.

Solve for yy, we obtain y=ey+yexxey+exy=ey+yexxey+ex

Plug (0,1)(0,1) into the right hand side, we get the slope of the tangent line m=y(0)=e+11=(e+1).m=y(0)=e+11=(e+1).

So the tangent line is defined by y=(e+1)x+1.y=(e+1)x+1.

Exercise 7.24 Find the absolute maximum value of the function f(x)=xex.f(x)=xex.

Solution.

The function ff is differentiable over all real numbers. To find the absolute maximum, we study the monotonicity of the function.

The first derivative is f(x)=1exf(x)=1ex. Since ex>1ex>1 for x>0x>0 and ex<1ex<1 for x<0x<0, we know that f(x)<0f(x)<0 for x>0x>0 and f(x)>0f(x)>0 for x<0x<0.

The information shows that f(x)f(x) is increasing over (,0)(,0) and decreasing over (0,)(0,).

Thus, f(x)f(x) has a maximum f(0)=0e0=1f(0)=0e0=1.

Exercise 7.25 Evaluate the integral ex1+exdx.ex1+exdx.

Solution.

ex1+exdx=uduu=1+ex=23u32+C=23(1+ex)32+C.ex1+exdx=uduu=1+ex=23u32+C=23(1+ex)32+C.

Exercise 7.26 Evaluate the integral (ex+ex)2dx.(ex+ex)2dx.

Solution.

(ex+ex)2dx=(e2x+2+e2x)dx=12e2x+2x12e2x+C.(ex+ex)2dx=(e2x+2+e2x)dx=12e2x+2x12e2x+C.

7.4 General Logarithmic and Exponential Functions

Exercise 7.27 Differentiate the function f(x)=x5+5x.f(x)=x5+5x.

Solution.

f(x)=5x+5xln5.f(x)=5x+5xln5.

Exercise 7.28 Differentiate the function g(x)=xsin(2x).g(x)=xsin(2x).

Solution.

f(x)=sin(2x)+xcos(2x)(2x)=sin(2x)+x2xcos(2x)ln2.f(x)=sin(2x)+xcos(2x)(2x)=sin(2x)+x2xcos(2x)ln2.

Exercise 7.29 Differentiate the function f(x)=log5(xex).f(x)=log5(xex).

Solution.

f(x)=1ln5(lnx+x)=1ln5(1x+1)=x+1xln5.f(x)=1ln5(lnx+x)=1ln5(1x+1)=x+1xln5.

Exercise 7.30 Differentiate the function y=xcosx.y=xcosx.

Solution.

f(x)=(ecosxlnx)=xcosx(cosxlnx)=xcosx(sinxlnx+cosxx)=(cosxxsinxlnx)xcosxx.f(x)=(ecosxlnx)=xcosx(cosxlnx)=xcosx(sinxlnx+cosxx)=(cosxxsinxlnx)xcosxx.

Exercise 7.31 Evaluate the integral (x5+5x)dx.(x5+5x)dx.

Solution.

(x5+5x)dx=x66+5xln5+C.(x5+5x)dx=x66+5xln5+C.

Exercise 7.32 Evaluate the integral log10xxdx.log10xxdx.

Solution.

log10xxdx=1ln10lnxxdx=1ln10lnx d(lnx)u=lnx=(lnx)22ln10+C.log10xxdx=1ln10lnxxdx=1ln10lnx d(lnx)u=lnx=(lnx)22ln10+C.

Exercise 7.33 Evaluate the integral 102x2x+1dx.102x2x+1dx.

Solution.

Let u=2x+1u=2x+1, then du=2xln2dxdu=2xln2dx. Therefore, 2x2x+1dx=1ln21udu=lnuln2+C=ln(2x+1)ln2+C.2x2x+1dx=1ln21udu=lnuln2+C=ln(2x+1)ln2+C.

By FTC, 102x2x+1dx=ln(21+1)ln2ln(20+1)ln2=ln3ln2ln2.102x2x+1dx=ln(21+1)ln2ln(20+1)ln2=ln3ln2ln2.

Exercise 7.34 Find the area of the region bounded by the curves y=2xy=2x, y=5x,x=1,y=5x,x=1, and x=1x=1

Solution.

Note that 5x>2x5x>2x for x>0x>0 and 2x>5x2x>5x for x<0x<0

So the area of the region is given by 01(2x5x)dx+10(5x2x)dx=(2xln25xln5)|01+(5xln52xln2)|10=165ln212ln5ln2ln501(2x5x)dx+10(5x2x)dx=(2xln25xln5)01+(5xln52xln2)10=165ln212ln5ln2ln5

7.5 Exponential Growth and Decay

Exercise 7.35 A sample of tritium-3 decayed to 94.5% of its original amount after a year.

  1. What is the half-life of tritium-3?
  2. How long would it take the sample to decay to 20% of its original amount?

Solution.

The decay of tritium-3 can be modeled by the function m(t)=m(0)ekt.m(t)=m(0)ekt.

We know that m(1)=0.945m(0)m(1)=0.945m(0) which implies that ek=0.945ek=0.945. So k=ln(0.945)k=ln(0.945).

The half-life is the solution of the equation 0.5=etln(0.945).0.5=etln(0.945). Taking lnln of both sides and solve for tt, we get the half-life is ln(0.5)ln(0.945)12.25ln(0.5)ln(0.945)12.25 years.

Similarly, it takes the sample ln(0.2)ln(0.945)28.45ln(0.2)ln(0.945)28.45 years to decay to 20%.

Exercise 7.36 A curve passes through the point (0,5)(0,5) and has the property that the slope of the curve at every point PP is twice the yy-coordinate of PP. What is the equation of the curve?

Solution.

The slope of the line is given by the derivative yy. From the given information, we know that y=2yy=2y which has the solution y(x)=Ce2xy(x)=Ce2x.

Since the point (0,5)(0,5) is on the curve, we have 5=y(0)=Ce05=y(0)=Ce0. So C=5C=5 and the equation of the curve is y=5e2x.y=5e2x.

Exercise 7.37 A freshly brewed cup of tea has temperature 97C. The temperature of the room is 22C. After 10 minutes, the temperature of the coffee is 47C. Find the temperature of the coffee after 20 minutes. By Newton’s cooling law, the temperature of the coffee satisfies the equation y(t)=k(y(t)R)y(t)=k(y(t)R), where RR is the room temperature.

Solution.

Since R=22R=22 and y(0)=97y(0)=97, by Newton’s cooling law, the temperature of the coffee can be modeled by y(t)=(9823)ekt+23=75ekt+23y(t)=(9823)ekt+23=75ekt+23.

We also know that y(10)=47y(10)=47 which gives us an equation 75e10k+22=47.75e10k+22=47.

Solve for kk, we get t=ln310.t=ln310.

Therefore, y(20)=75e2ln3+22=75(eln3)2+22=91330.3C.y(20)=75e2ln3+22=75(eln3)2+22=91330.3C.

Exercise 7.38 How long will it take an investment to double in value if the interest rate is 6% compounded continuously?

Solution.

The balance function of an investment with an annual rate 6% compounded continuous is given by B(t)=Pe0.06t.B(t)=Pe0.06t.

When the balance is doubled, it satisfies the equation 2P=Pe0.06.2P=Pe0.06.

Solve the equation, we get that it takes about t=ln2/0.0611.55t=ln2/0.0611.55 years that the investment will be doubled.

7.6 Inverse Trigonometric Functions

Exercise 7.39 Find the derivative of the function

y=tan1(x2)y=tan1(x2)

Solution.

By the chain rule, we get y=2x1+x4.y=2x1+x4.

Exercise 7.40 Find the derivative of the function

y=sin1(2x+1)y=sin1(2x+1)

Solution.

By the chain rule, we get y=21(2x+1)2.y=21(2x+1)2.

Exercise 7.41 Find the derivative of the function

f(θ)=arcsinsinθf(θ)=arcsinsinθ

Solution.

Apply the chain rule twice, we get y=11sinθ12sinθcosθ.y=11sinθ12sinθcosθ.

Exercise 7.42 Find the derivative of the function

y=arctan1x1+xy=arctan1x1+x

Solution.

Note that 1x1+x=21+x11x1+x=21+x1.

Apply the chain rule three times, we get y=11+1x1+x121x1+x(2(x+1)2)=12(x+1)1+x1x.y=11+1x1+x121x1+x(2(x+1)2)=12(x+1)1+x1x.

Exercise 7.43 Evaluate the integral

31/381+x2dx31/381+x2dx

Solution.

31/381+x2dx=8arctan(x)|31/3=8(π3π6)=4π3.31/381+x2dx=8arctan(x)31/3=8(π3π6)=4π3.

Exercise 7.44 Evaluate the integral

1/20sin1x1x2dx1/20sin1x1x2dx

Solution.

Let u=sin1xu=sin1x. Then sin1x1x2dx=udu=12u2+C=12(sin1x)2+C.sin1x1x2dx=udu=12u2+C=12(sin1x)2+C.

Therefore, 1/20sin1x1x2dx=12(sin1(1/2))212(sin10)2=12(π6)2=π72.1/20sin1x1x2dx=12(sin1(1/2))212(sin10)2=12(π6)2=π72.

Exercise 7.45 Evaluate the integral

π/20sinx1+cos2xdxπ/20sinx1+cos2xdx

Solution.

Let u=cosxu=cosx. Then sinx1+cos2xdx=11+u2du=arctan(u)+C=arctan(cosx)+C.sinx1+cos2xdx=11+u2du=arctan(u)+C=arctan(cosx)+C.

Therefore, π/20sinx1+cos2xdx=arctan(cos(π/2))arctan(cos0)=arctan(0)arctan(1)=π4.π/20sinx1+cos2xdx=arctan(cos(π/2))arctan(cos0)=arctan(0)arctan(1)=π4.

Exercise 7.46 Evaluate the integral

e2x1e4xdxe2x1e4xdx

Solution.

Let u=e2xu=e2x. Then du=2e2xdxdu=2e2xdx and e2x1e4xdx=1211u2du=12arcsin(u)+C=12arcsin(e2x)+C.e2x1e4xdx=1211u2du=12arcsin(u)+C=12arcsin(e2x)+C.

Exercise 7.47 Find the limit

limxarccos(1+x21+2x2)limxarccos(1+x21+2x2)

Solution.

Because cosxcosx is continuous over its domain [-1, 1] and 01+x21+2x2101+x21+2x21.

Then limxarccos(1+x21+2x2)=arccos(limx1+x21+2x2)=arccos(12)=π3.limxarccos(1+x21+2x2)=arccos(limx1+x21+2x2)=arccos(12)=π3.

Exercise 7.48 Find the limit

limx0+tan1(lnx)limx0+tan1(lnx)

Solution.

Because limx0+lnx=limx0+lnx= and limxtan1x=π2limxtan1x=π2.

Then limx0+tan1(lnx)=π2.limx0+tan1(lnx)=π2.

7.7 L’hospital’s Rule

Exercise 7.49 Evaluate the limit if it exist. Otherwise, explain why.

limx1x32x2+1x31limx1x32x2+1x31

Solution.

Because limx1(x32x2+1)=0limx1(x32x2+1)=0 and limx1(x31)=0limx1(x31)=0. Moreover, limx1(x32x2+1)(x31)=limx13x24x3x2=343=13.limx1(x32x2+1)(x31)=limx13x24x3x2=343=13.

By L’Hospital’s rule, limx1x32x2+1x31=limx1(x32x2+1)(x31)=13.limx1x32x2+1x31=limx1(x32x2+1)(x31)=13.

Exercise 7.50 Evaluate the limit if it exist. Otherwise, explain why.

limx0sin4xtan5xlimx0sin4xtan5x

Solution.

Since limx0sin4x=0limx0sin4x=0 and limx0cos4x=0limx0cos4x=0, and limx0(sin4x)(tan5x)=limx04cos4x5sec25x=45.limx0(sin4x)(tan5x)=limx04cos4x5sec25x=45.

By L’Hospital’s rule, limx0sin4xtan5x=limx0(sin4x)(tan5x)=45.limx0sin4xtan5x=limx0(sin4x)(tan5x)=45.

Exercise 7.51 Evaluate the limit if it exist. Otherwise, explain why.

limθπ/21sinθ1+cos2θlimθπ/21sinθ1+cos2θ

Solution.

We will apply L’Hospital’s rule twice.

limθπ/21sinθ1+cos2θ=limθπ/2cosθ2sin2θ=limθπ/2sinθ4cos2θ=14=14.limθπ/21sinθ1+cos2θ=limθπ/2cosθ2sin2θ=limθπ/2sinθ4cos2θ=14=14.

Exercise 7.52 Evaluate the limit if it exist. Otherwise, explain why.

limx0sin1xxlimx0sin1xx

Solution.

We may apply L’Hospital’s rule.

limx0sin1xx=limθ011x2=1.limx0sin1xx=limθ011x2=1.

Exercise 7.53 Evaluate the limit if it exist. Otherwise, explain why.

limxxsin(π/x)limxxsin(π/x)

Solution.

First write the expression as a quotient and then apply L’Hospital’s rule.

limxxsin(π/x)=limxsin(π/x)1/x=limxcos(π/x)(π(1/x))(1/x)=limxπcos(π/x)=π.limxxsin(π/x)=limxsin(π/x)1/x=limxcos(π/x)(π(1/x))(1/x)=limxπcos(π/x)=π.

Exercise 7.54 Evaluate the limit if it exist. Otherwise, explain why.

limx0+(1x1ex1)limx0+(1x1ex1)

Solution.

First write the expression as a quotient and then apply L’Hospital’s rule twice.

limx0+(1x1ex1)=limx0+exx1x(ex1)=limx0+ex1(ex1)+xex=limx0+ex2ex+xex=12.limx0+(1x1ex1)=limx0+exx1x(ex1)=limx0+ex1(ex1)+xex=limx0+ex2ex+xex=12.

Exercise 7.55 Evaluate the limit if it exist. Otherwise, explain why.

limx(xlnx)limx(xlnx)

Solution.

An estimate using the identity ln(ex)=xln(ex)=x shows that the limit is . To verify that, we factor out xx. Note that limxlnxx=limx1x=0.limxlnxx=limx1x=0.

Then limx(xlnx)=limxx(1lnxx)=.limx(xlnx)=limxx(1lnxx)=.

Exercise 7.56 Find the limit

limxx1/xlimxx1/x

Solution.

Using the identity ln(ex)=xln(ex)=x, we may rewrite x1/xx1/x as x1/x=elnxx.x1/x=elnxx.

Since limxlnxx=limx1x=0.limxlnxx=limx1x=0.

Then limxx1/x=elimxlnxx=e0=1.limxx1/x=elimxlnxx=e0=1.