Topic 8 Techniques of Integration

8.1 Integration by Parts

Exercise 8.1 Evaluate the integral.

xcos5xdx

Solution.

xcos5xdx=15xd(sin5x)=15(xsin5xsin5xdx)=15(xsin5x+15cos5x)+C=15xsin5x+125cos5x+C.

Exercise 8.2 Evaluate the integral.

te3tdt

Solution.

te3tdt=13td(e3t)=13(te3te3tdt)=13(te3t+13e3t)+C=13te3t19e3t+C

Exercise 8.3 Evaluate the integral.

sin1xdx

Solution.

sin1xdx=xsin1xxd(sin1x)=xsin1xx1x2dx=xsin1x+12u1/2duu=1x2=xsin1x+u+C=xsin1x+1x2+C.

Exercise 8.4 Evaluate the integral.

arctan4tdt

Solution.

arctan4tdt=tarctan4ttd(arctan4t)=tarctan4t4t1+(4t)2dt=tarctan4t181uduu=1+(4t)2=tarctan4t18ln|u|+C=tarctan4t18ln(1+16t2)+C

Exercise 8.5 Evaluate the integral.

eθcos2θdθ

Solution.

Let I=eθcos2θdθ.

I=cos2θd(eθ)=(eθcos2θeθd(cos2θ))=eθcos2θ2eθsin2θdθ=eθcos2θ+2(sin2θd(eθ))=eθcos2θ+2(eθsin2θeθd(sin2θ))=eθcos2θ+2(eθsin2θ2eθcos2θdθ)=eθcos2θ+2eθsin2θ4I.

Solve for I, we get I=eθcos2θdθ=15eθ(2sin2θcos2θ)+C.

Exercise 8.6 Evaluate the integral.

01(x2+1)exdx

Solution.

We first find an antiderivative. (x2+1)exdx=(x2+1)d(ex)=((x2+1)exexd(x2+1))=(x2+1)ex+2xexdx=(x2+1)ex2xd(ex)=(x2+1)ex(2xexexd(2x))=(x2+1)ex2xex+2exdx=(x2+1)ex2xex2ex+C=ex(x2+2x+3)+C.

By FTC, 01(x2+1)exdx=(e1(12+21+3)3e0)=36e

Exercise 8.7 Evaluate the integral.

01/2cos1xdx

Solution.

Find the indefinite integral first.

cos1xdx=xcos1xxd(cos1x)=xcos1x+x1x2dx=xcos1x12uduu=1x2=xcos1xu+C=xcos1x1x2+C

By FTC, 01/2cos1xdx=((1/2)cos1(1/2)1(1/2)2)(0cos10102)=π632+1

Exercise 8.8 Evaluate the integral.

cosxdx

Solution.

Apply the substitution method first and then the integration by parts.

cosxdx=2ucosuduu=x=2ud(sinu)=2(usinusinudu)=2(usinu+cosu)+C=2(xsinx+cosx)+C

Exercise 8.9 Evaluate the integral.

xln(1+x)dx

Solution.

Apply the substitution method first and then the integration by parts.

xln(1+x)dx=(u1)lnuduu=x+1=ulnudulnudu=12lnudu2(ulnuud(lnu))=12(u2lnuu2d(lnu))(ulnudu)=12(u2lnuudu)(ulnuu)+C=12(u2lnu12u2)(ulnuu)+C=12(u22u)lnu+u14u2+C=12(x21)ln(x+1)14(x22x3)+C.

Exercise 8.10 Prove the reduction formula

cosnxdx=1ncosn1xsinx+n1ncosn2xdx

Solution.

Let f(x)=cosn1x and g(x)=sinx. Then cosnx=f(x)g(x)dx. We apply the integration by parts to the left-hand side. I=cosnxdx=cosn1xd(sinx)=cosn1xsinxsinxd(cosn1x)=cosn1xsinx+(n1)sin2xcosn2xdx=cosn1xsinx+(n1)(1cos2x)cosn2xdx=cosn1xsinx+(n1)cosn2xdx(n1)cosnxdx=cosn1xsinx+(n1)cosn2xdx(n1)I

Solve for I, we get I=1ncosn1xsinx+n1ncosn2xdx.

Therefor, cosnxdx=1ncosn1xsinx+n1ncosn2xdx.

Exercise 8.11 Evaluate the integral.

sin2xcos3xdx

Solution.

Since not both cosx has an odd power, we may use the substitution t=sinx and the Pythagorean identity sin2x+cos2=1 to change the integrand into a polynomial of t. sin2xcos3xdx=sin2xcos2xd(sinx)=t2(1t2)dtt=sinx=t2t4dt=t33t55+C=sin3x3sin5x5+C

Exercise 8.12 Evaluate the integral.

02πsin2(13x)dx

Solution.

Again, we first find the indefinite integral.

We use the double angle formula to reduce the power of the trigonometric function in the integrand.

sin2(13x)dx=12(1cos(23x))dx=x212cos(23x)dx=x234cos(t)dtt=23x=x234sint+C=x234sin(23x)+C

By FTC, 02πsin2(13x)dx=π34sin(4π3)=π+338

`

Exercise 8.13 Evaluate the integral.

sin2xcos4xdx

Solution.

We use trigonometric identities to reduce the power in the integrand. sin2xcos4x=(sinxcosx)2cos2x=14(sin(2x)cosx)2=116(sin(3x)+sinx)2=116(sin2(3x)+2sin3xsinx+sin2x)=116(12(1cos6x)+cos(2x)cos(4x)+12(1cos2x))=116132cos6x+132cos(2x)116cos(4x)

Then the integral is sin2xcos4xdx=(116132cos6x+132cos(2x)116cos(4x))dx=x16+164sin2x164sin4x1192sin6x+C

Remark: Note that sin2xcos4x=(1cos2x)cos4x=cos4xcos6x. So we may evaluate the integral using the formula (n>0) cosnxdx=1nsinxcosn1xn1ncosn2xdx which is obtain via integration by parts.

Exercise 8.14 Evaluate the integral.

tanxsec3xdx

Solution.

Note that d(secx)=(tanxsecx)dx. Let t=secx. Then tanxsec3xdx=t2dtt=secx=t33+C=sec3x3+C

Exercise 8.15 Evaluate the integral.

0π/4sec4xtan4xdx

Solution.

Let t=tanx. Then dt=sec2xdx. Using the Pythagorean identity 1+tan2x=sec2x, we get sec4xtan4xdx=(1+t2)t2dt=(t2+t4)dt=t33+t44+C=tan3x3+tan4x4+C

By FTC, 0π/4sec4xtan4xdx=tan3(π/4)3+tan4(π/4)4=13+14=712.

Exercise 8.16 Evaluate the integral.

tan5xdx

Solution.

One way to evaluate the integral is to rewrite tan5x=sin5xcos5x and then substitute t=cosx.

Another way is to use the identity tan2x=1sec2x and ddxtanx=sec2 to deduce a reduction formula. tan5xdx=tan3x(sec2x1)dx=(tan3xsec2xtan3x)dx=tan3xsec2xdxtan3xdx=t3dttan3xdxt=tanx=t44tanx(sec2x1)dx=tan4x4tanxsec2xdx+tanxdx=tan4x4tan2x2ln|cosx|+C.

Remark: In general (n1), we have tannxdx=1n1tann1xtann2xdx

Exercise 8.17 Evaluate the integral.

xsecxtanxdx

Solution.

Let f(x)=x and g(x)=secxtanx. Then g(x)=secx. By integration by parts, we have xsecxtanxdx=xsecxsecxdx=xsecxln|secx+tanx|+C.

Exercise 8.18 Evaluate the integral.

sin5xsinxdx

Solution.

Using the sum of angles formula for cosine, we have sin5xsinxdx=12(cos4xcos6x)dx=18sin4x112sin6x+C.

8.2 Trigonometric Substitution

When having a2b2x2, a2+b2x2 or b2x2a2, we consider trigonometric substitution.

Assume that a and b are both positive. Then we have the following table of substitutions and transformations.

Expression Substitution Transformation
a2b2x2 x=absinθ,π2θπ2 a2b2x2=acos(θ)
a2+b2x2 x=abtanθ,π2<θ<π2 a2+b2x2=asec(θ)
b2x2a2 x=absecθ,0θ<π2 or πθ<3π2 b2x2a2=atan(θ)

Exercise 8.19 Evaluate the integral.

x29x2dx

Solution.

Let x=3sint with π/2<t<π/2.

Then x29x2dx=9sin2t3cost3costdt=9sin2tdt=92(1cos2t)dt=92t94sin2t+C=92arcsin(x3)12x9x2+C

Exercise 8.20 Evaluate the integral.

0adx(a2+x2)3/2,a>0

Solution.

Let x=atant with π/2<t<π/2. Then dx=asec2tdt and (a2+x2)3/2=(asect)3.

Then dx(a2+x2)3/2=asec2tdta3sec3t=costdta2=sinta2+C=1a2x2a2+x2+C

Remark: Since tant=xa, then sec2t=1+x2a2 and cos2t=a2a2+x2. So sint=1cos2t=x2a2+x2.

By FTC, 0adx(a2+x2)3/2=1a2a2a2+a2=22a2.

Exercise 8.21 Evaluate the integral.

23dx(x21)3/2

Solution.

Let x=sect with 0<t<π/2 or π<t<3π/2. Then dx=secttantdt and (x21)3/2=tan3t.

Then dx(x21)3/2=secttantdttan3t=costdtsin2t=1sint+C=xx21+C

Remark: Here we used the identities sint=1cos2t=11sec2t=11x2.

By FTC, 23dx(x21)3/2=39212221=839212.

Exercise 8.22 Evaluate the integral.

dxx2+2x+5

Solution.

By completing the square, we may rewrite x2+2x+5=1+(x+1)2. Let x+1=sect. Then dx=secttantdt and x2+2x+5=tant. Therefore, dxx2+2x+5=secttantdttant=sectdt=ln|sect+tant|+C=ln|x+1+1(x+1)2|+C

Exercise 8.23 Evaluate the integral.

x1x4dx

Solution.

Let x2=sint, then 2xdx=costdt and 1x4=cost. Then x1x4dx=12cos2tdt=14(1+cos2t)dt=14t+18sin2t+C=14arcsin(x2)+12x21x4+C

Remark: Instead of substitute x2 by sint, you may use substitution twice, u=x2, u=sint.

Exercise 8.24 Evaluate the integral.

0π/2cosx1+sin2xdx

Solution.

Let sinx=tant. Then cosxdx=sec2tdt and 1+sin2x=1+tan2t=sect. Therefore, cosx1+sin2xdx=sec2tdtsect=sectdt=ln|sect+tant|+C=ln|sinx+1+sin2x|+C

By FTC, 0π/2cosx1+sin2xdx=ln|1+1+1|0=ln(1+2)

Remark: Instead of the substitution sinx=tant, you may first set u=sinx and then set u=tant.

8.3 Integrations of Rational Functions by Partial Fractions

In Algebra, there is a theorem called the Fundamental Theorem of Algebra which implies that for rational function P(x)/Q(x) can be written as a sum of partial fractions of the form A(ax+b)i or Ax+B(ax2+bx+c)j, where ax2+bx+c is a irreducible quadratic form, that is the equation ax2+bx+c=0 has no real roots.

After rewriting the rational function into a sum of partial fractions, we may use substitution methods to find the integral.

Exercise 8.25 Write out the form of the partial fraction decomposition of the function. Do not determine the numerical values of the coefficients.

x22x3+2x2+x

Solution.

The denominator can be factor into x(x+1)2. Then the sum of partial fractions for the rational function can be written in the following form x22x3+2x2+x=Ax+Bx+1+C(x+1)2.

Remark: To determine the values of coefficients, we clear the denominator first. From here, there are two ways you may try.

Method one: substitute x by the roots of the GCD and/or special numbers and then solve for the undetermined coefficients.

Method two: simplify both sides and get system of equations of the undetermined coefficients by comparing coefficients of polynomials in both sides.

Exercise 8.26 Write out the form of the partial fraction decomposition of the function. Do not determine the numerical values of the coefficients.

x4(x2x+1)(x2+2)2

Solution.

Since the denominators has irreducible quadratic functions, the partial fraction form for the rational function can be written as

x4(x2x+1)(x2+2)2=A1x+B1x2x+1+A2x+B2x2+2+A3x+C3(x2+2)2.

Remark: Although an irreducible quadratic form has no real roots, it has complex roots. One may also substitute x by a complex root to solve of the undetermined coefficients.

Exercise 8.27 Evaluate the integral 5x+1(2x+1)(x1)dx

Solution.

We first write the rational function in the partial fraction form 5x+1(2x+1)(x1)=A2x+1+Bx1.

Clear the denominators, we have 5x+1=A(x1)+B(2x+1).

Let x=1, we get 6=3B. So B=2.

Let x=12, we get 52+1=A(121). So A=1.

Then the integral is 5x+1(2x+1)(x1)dx=12x+1dx+2x1dx=12ln|2x+1|+2ln|x1|+C.

Exercise 8.28 Evaluate the integral

0122x2+3x+1dx

Solution.

The denominator can be factored into (2x+1)(x+1).

Write the rational function in the partial fraction form 22x2+3x+1=A2x+1+Bx+1.

Clear the denominators, we have 2=A(x+1)+B(2x+1).

Let x=1, we get 2=B. So B=2.

Let x=12, we get 2=A(12+1). So A=4.

Then the indefinite integral is 2(2x+1)(x+1)dx=42x+1dx+2x1dx=2ln|2x+1|2ln|x+1|+C.

By FTC, 0122x2+3x+1dx=2ln32ln2=ln(94).

Exercise 8.29 Evaluate the integral

01x2+x+1(x+1)2(x+2)dx

Solution.

Write the rational function in the partial fraction form x2+x+1(x+1)2(x+2)=Ax+2+Bx+1+C(x+1)2.

Clear the denominators, we have x2+x+1=A(x+1)2+B(x+1)(x+2)+C(x+2).

Let x=1, we get 1=C.

Let x=2, we get 3=A.

Comparing coefficients of degree two terms in both sides, we get 1=A+B. So B=2.

Then the indefinite integral is x2+x+1(x+1)2(x+2)dx=3x+2dx+2x+1dx+1(x+1)2dx=3ln|x+2|2ln|x+1|1x+1+C.

By FTC, 0122x2+3x+1dx=(3ln32ln212)(3ln22ln11)=12+ln(2732).

Exercise 8.30 Evaluate the integral

x2x+6x3+3xdx

Solution.

The denominator can be factored into x(x2+3).

We may write the rational function in the partial fraction form x2x+6x3+3x=Ax+Bx+Cx2+3.

Clear the denominators, we have x2x+6=A(x2+3)+Bx2+Cx.

Let x=0. We find A=2. Let x=i3, we get x2=3 and 3i3+6=3B+i3C. Since B and C are real numbers, 3=3B and i3=i3C. So B=1 and C=1.

Then the indefinite integral is x2x+6x3+3xdx=2xdxxx2+3dx1x2+3dx=2ln|x|12ln(x2+3)33arctan(x3)+C=ln(x2x3+3)33arctan(x3)+C.

Exercise 8.31 Evaluate the integral

x2+x+1(x2+1)2dx

Solution.

The rational function can be written in the partial fraction form x2+x+1(x2+1)2=x2+1(x2+1)2+x(x2+1)2=1x2+1+x(x2+1)2.

Clear the denominators, we have x2+x+1=(Ax+B)(x2+1)+Cx+D.

By comparing the top degree terms, we find that A=0. So the equality become x2+x+1=B(x2+1)+Cx+D. Comparing the same degree terms, we find B=1, C=1 and 1=B+D which implies D=0. –>

Therefore, x2+x+1(x2+1)2dx=1x2+1dx+x(x2+1)2dx=arctanx12(x2+1)+C.

Exercise 8.32 Evaluate the integral

x3+6x2x4+6x2dx

Solution.

The rational function can be written in the partial fraction form x3+6x2x4+6x2=Ax+Bx2+Cx+Dx2+6.

Clear the denominators, we have x3+6x2=Ax(x2+6)+B(x2+6)+Cx3+Dx2.

Let x=0. We find B=13.

Let x=i6. Then x2=6, x3=66 i and 2=66C i6D. As C and D are real numbers, we must have C=0 and D=13.

Comparing degree 3 terms, we find A=1.

Therefore, x3+6x2x4+6x2dx=1xdx+13x2dx+13x2+6dx=ln|x|+13x+618arctan(x6)+C.

Exercise 8.33 Evaluate the integral

dxxx1

Solution.

Although the integrand is note a rational function, we may apply a linear substitution u=x1 to rewrite the integral as dxxx1=2uduu(u2+1)

Simplify and evaluate the resulting integral, we get dxxx1=2arctan(x1)+C.

Exercise 8.34 Evaluate the integral

sinxcos2x3cosxdx

Solution.

Let u=cosx. Then sinxcos2x3cosxdx=dxx23x=13(1x1x3)dx=13(ln|x|ln|x3|)+C=13(ln|cosx|ln|cosx3|)+C.

8.4 Improper Integrals

8.4.1 Infinite Intervals

Definition 8.1 Suppose the integral atf(x)dx exists for any t.

Then af(x)dx=limtatf(x)dx, and af(x)dx=limttaf(x)dx.

An improper integral is called convergent if the corresponding limit exists and divergent if the limit does not exist.

If both af(x)dx and af(x)dx are convergent, then f(x)dx=af(x)dx+af(x)dx.

Exercise 8.35 Determine whether the integral is convergent or divergent. Evaluate the integral if it is convergent. 011+x4dx

Solution.

We first find the indefinite integral. 11+x4dx=u14duu=x+1=43u34+C=43(1+x)34+C.

Then limt0t11+x4dx=limt(43(1+t)3443)=.

By definition, 011+x4dx=limt0t11+x4dx= is divergent.

Exercise 8.36 Determine whether the integral is convergent or divergent. Evaluate the integral if it is convergent. 02xdx

Solution.

We first find the indefinite integral. 2xdx=2xln2+C

Then limtt02xdx=limt(1ln22xln2)=1ln2.

By definition, 011+x4dx=limt0t11+x4dx=1ln2.

Exercise 8.37 Determine whether the integral is convergent or divergent. Evaluate the integral if it is convergent. x29+x6dx

Solution.

We first find the indefinite integral. x29+x6dx=1911+u2du3u=x3=19arctanu+C=19arctan(x33)+C

Then limtt019arctan(x33)=limt19arctan(t33)=π18 and limt0t19arctan(x33)=limt19arctan(t33)=π18.

By definition, x29+x6dx=π18+π18=π9.

Exercise 8.38 Determine whether the integral is convergent or divergent. Evaluate the integral if it is convergent. 2xe3xdx

Solution.

We first find the indefinite integral. xe3xdx=x(e3x3)dx=13(xe3xe3xdx)=13(xe3x+13e3x)+C=13xe3x19e3x+C

Then 2xe3xdx=limt[(13te3t19e3t)(132e619e6)]=79e613limtte3t=79e6by L'Hospital's rule

8.4.2 Discountinuous Integrands

Definition 8.2 Suppose the function f is continuous on [a,b) but discontinuous at b. Then abf(x)dx=limtbatf(x)dx.

Suppose the function f is continuous on (a,b] but discontinuous at a. Then abf(x)dx=limta+tbf(x)dx.

An improper integral is called convergent if the corresponding limit exists and divergent if the limit does not exist.

If f has a discontinuity c within the interval (a,b) and both acf(x)dx and cbf(x)dx are convergent, then abf(x)dx=acf(x)dx+cbf(x)dx

Exercise 8.39 Determine whether the integral is convergent or divergent. Evaluate the integral if it is convergent.

2313xdx

Solution.

We first find the indefinite integral. 13xdx=u12duu=3x=2u+C=23x+C

Then 2313xdx=limt32t13x=limt3(23t+2)=2

Exercise 8.40 Determine whether the integral is convergent or divergent. Evaluate the integral if it is convergent.

01lnxxdx

Solution.

We first find the indefinite integral. lnxxdx=2ln(u2)duu=x=4lnudu=4(ulnuu)+C=2xlnx4x+C.

Then 01lnxxdx=limt0+t1lnxxdx=4limt0+(2tlnt4t)=4limt0+(2tlnt)=42limt0+(lnt)(1t)L'Hospitcal's rule=420=4.

Exercise 8.41 Determine whether the integral is convergent or divergent. Evaluate the integral if it is convergent.

05xx2dx

Solution.

We first find the indefinite integral. xx2dx=(1+2x2)dx=x+2ln|x2|.

Since limt2+ln(t2)=, limt2+t5xx2dx=5+2ln3limt2+(t+2ln(t2))=.

Therefore, the given improper integral is divergent.

Exercise 8.42 Determine whether the integral is convergent or divergent. Evaluate the integral if it is convergent.

03dxx26x+5

Solution.

We first find the indefinite integral by partial fractions. dxx26x+5=14x1+14x5dx=141x11x5dx=14(ln|x1|ln|x5|)+C.

Since limt1+ln(t1)=, similar to the previous question, the given improper integral is divergent.

8.4.3 Comparison Test

Theorem 8.1 Suppose f and g are continuos functions and f(x)g(x)0 for all xa.

  1. If af(x)dx is convergent, then ag(x)dx is convergent.

  2. If ag(x)dx is divergent, then af(x)dx is divergent.

The same conclusion holds true for improper integrals of functions with discontinuities.

We have the following results. 11xpdx is convergent if p>1 and divergent if p1

11ekxdx is convergent if k>0 and divergent if k<0.

Exercise 8.43 Determine whether the integral is convergent or divergent.

0sin2x1+x2dx

Solution.

We know that 011+x2dx=limt0t11+x2dx=limtarctant=π2.

Since 0sin2x1, by comparison theorem, the integral is convergent.

Exercise 8.44 Determine whether the integral is convergent or divergent.

0arctanx2+exdx

Solution.

We know that 01exdx=limt0texdx=limtet+1=1.

Since 0arctanx2+exπ21ex, by comparison theorem, the integral is convergent.