Topic 8 Techniques of Integration
8.1 Integration by Parts
Exercise 8.1 Evaluate the integral.
∫xcos5xdx∫xcos5xdx
Solution.
∫xcos5xdx=15∫xd(sin5x)=15(xsin5x−∫sin5xdx)=15(xsin5x+15cos5x)+C=15xsin5x+125cos5x+C.∫xcos5xdx=15∫xd(sin5x)=15(xsin5x−∫sin5xdx)=15(xsin5x+15cos5x)+C=15xsin5x+125cos5x+C.
Exercise 8.2 Evaluate the integral.
∫te−3tdt∫te−3tdt
Solution.
∫te−3tdt=−13∫td(e−3t)=−13(te−3t−∫e−3tdt)=−13(te−3t+13e−3t)+C=−13te−3t−19e−3t+C∫te−3tdt=−13∫td(e−3t)=−13(te−3t−∫e−3tdt)=−13(te−3t+13e−3t)+C=−13te−3t−19e−3t+C
Exercise 8.3 Evaluate the integral.
∫sin−1xdx∫sin−1xdx
Solution.
∫sin−1xdx=xsin−1x−∫xd(sin−1x)=xsin−1x−∫x√1−x2dx=xsin−1x+12∫u−1/2duu=1−x2=xsin−1x+√u+C=xsin−1x+√1−x2+C.∫sin−1xdx=xsin−1x−∫xd(sin−1x)=xsin−1x−∫x√1−x2dx=xsin−1x+12∫u−1/2duu=1−x2=xsin−1x+√u+C=xsin−1x+√1−x2+C.
Exercise 8.4 Evaluate the integral.
∫arctan4tdt∫arctan4tdt
Solution.
∫arctan4tdt=tarctan4t−∫td(arctan4t)=tarctan4t−∫4t1+(4t)2dt=tarctan4t−18∫1uduu=1+(4t)2=tarctan4t−18ln|u|+C=tarctan4t−18ln(1+16t2)+C∫arctan4tdt=tarctan4t−∫td(arctan4t)=tarctan4t−∫4t1+(4t)2dt=tarctan4t−18∫1uduu=1+(4t)2=tarctan4t−18ln|u|+C=tarctan4t−18ln(1+16t2)+C
Exercise 8.5 Evaluate the integral.
∫e−θcos2θdθ∫e−θcos2θdθ
Solution.
Let I=∫e−θcos2θdθI=∫e−θcos2θdθ.
I=−∫cos2θd(e−θ)=−(e−θcos2θ−∫e−θd(cos2θ))=−e−θcos2θ−2∫e−θsin2θdθ=−e−θcos2θ+2(∫sin2θd(e−θ))=−e−θcos2θ+2(e−θsin2θ−∫e−θd(sin2θ))=−e−θcos2θ+2(e−θsin2θ−2∫e−θcos2θdθ)=−e−θcos2θ+2e−θsin2θ−4I.I=−∫cos2θd(e−θ)=−(e−θcos2θ−∫e−θd(cos2θ))=−e−θcos2θ−2∫e−θsin2θdθ=−e−θcos2θ+2(∫sin2θd(e−θ))=−e−θcos2θ+2(e−θsin2θ−∫e−θd(sin2θ))=−e−θcos2θ+2(e−θsin2θ−2∫e−θcos2θdθ)=−e−θcos2θ+2e−θsin2θ−4I.
Solve for II, we get I=∫e−θcos2θdθ=15e−θ(2sin2θ−cos2θ)+C.I=∫e−θcos2θdθ=15e−θ(2sin2θ−cos2θ)+C.
Exercise 8.6 Evaluate the integral.
∫10(x2+1)e−xdx∫10(x2+1)e−xdx
Solution.
We first find an antiderivative. ∫(x2+1)e−xdx=−∫(x2+1)d(e−x)=−((x2+1)e−x−∫e−xd(x2+1))=−(x2+1)e−x+∫2xe−xdx=−(x2+1)e−x−∫2xd(e−x)=−(x2+1)e−x−(2xe−x−∫e−xd(2x))=−(x2+1)e−x−2xe−x+2∫e−xdx=−(x2+1)e−x−2xe−x−2e−x+C=−e−x(x2+2x+3)+C.∫(x2+1)e−xdx=−∫(x2+1)d(e−x)=−((x2+1)e−x−∫e−xd(x2+1))=−(x2+1)e−x+∫2xe−xdx=−(x2+1)e−x−∫2xd(e−x)=−(x2+1)e−x−(2xe−x−∫e−xd(2x))=−(x2+1)e−x−2xe−x+2∫e−xdx=−(x2+1)e−x−2xe−x−2e−x+C=−e−x(x2+2x+3)+C.
By FTC, ∫10(x2+1)e−xdx=−(e−1(12+2⋅1+3)−3e0)=3−6e∫10(x2+1)e−xdx=−(e−1(12+2⋅1+3)−3e0)=3−6e
Exercise 8.7 Evaluate the integral.
∫1/20cos−1xdx∫1/20cos−1xdx
Solution.
Find the indefinite integral first.
∫cos−1xdx=xcos−1x−∫xd(cos−1x)=xcos−1x+∫x√1−x2dx=xcos−1x−∫12√uduu=1−x2=xcos−1x−√u+C=xcos−1x−√1−x2+C∫cos−1xdx=xcos−1x−∫xd(cos−1x)=xcos−1x+∫x√1−x2dx=xcos−1x−∫12√uduu=1−x2=xcos−1x−√u+C=xcos−1x−√1−x2+C
By FTC, ∫1/20cos−1xdx=((1/2)cos−1(1/2)−√1−(1/2)2)−(0⋅cos−10−√1−02)=π6−√32+1∫1/20cos−1xdx=((1/2)cos−1(1/2)−√1−(1/2)2)−(0⋅cos−10−√1−02)=π6−√32+1
Exercise 8.8 Evaluate the integral.
∫cos√xdx∫cos√xdx
Solution.
Apply the substitution method first and then the integration by parts.
∫cos√xdx=2∫ucosuduu=√x=2∫ud(sinu)=2(usinu−∫sinudu)=2(usinu+cosu)+C=2(√xsin√x+cos√x)+C∫cos√xdx=2∫ucosuduu=√x=2∫ud(sinu)=2(usinu−∫sinudu)=2(usinu+cosu)+C=2(√xsin√x+cos√x)+C
Exercise 8.9 Evaluate the integral.
∫xln(1+x)dx∫xln(1+x)dx
Solution.
Apply the substitution method first and then the integration by parts.
∫xln(1+x)dx=∫(u−1)lnuduu=x+1=∫ulnudu−∫lnudu=12∫lnudu2−(ulnu−∫ud(lnu))=12(u2lnu−∫u2d(lnu))−(ulnu−∫du)=12(u2lnu−∫udu)−(ulnu−u)+C=12(u2lnu−12u2)−(ulnu−u)+C=12(u2−2u)lnu+u−14u2+C=12(x2−1)ln(x+1)−14(x2−2x−3)+C.∫xln(1+x)dx=∫(u−1)lnuduu=x+1=∫ulnudu−∫lnudu=12∫lnudu2−(ulnu−∫ud(lnu))=12(u2lnu−∫u2d(lnu))−(ulnu−∫du)=12(u2lnu−∫udu)−(ulnu−u)+C=12(u2lnu−12u2)−(ulnu−u)+C=12(u2−2u)lnu+u−14u2+C=12(x2−1)ln(x+1)−14(x2−2x−3)+C.
Exercise 8.10 Prove the reduction formula
∫cosnxdx=1ncosn−1xsinx+n−1n∫cosn−2xdx∫cosnxdx=1ncosn−1xsinx+n−1n∫cosn−2xdx
Solution.
Let f(x)=cosn−1xf(x)=cosn−1x and g(x)=sinxg(x)=sinx. Then cosnx=f(x)g′(x)dxcosnx=f(x)g′(x)dx. We apply the integration by parts to the left-hand side. I=∫cosnxdx=∫cosn−1xd(sinx)=cosn−1xsinx−∫sinxd(cosn−1x)=cosn−1xsinx+(n−1)∫sin2xcosn−2xdx=cosn−1xsinx+(n−1)∫(1−cos2x)cosn−2xdx=cosn−1xsinx+(n−1)∫cosn−2xdx−(n−1)∫cosnxdx=cosn−1xsinx+(n−1)∫cosn−2xdx−(n−1)II=∫cosnxdx=∫cosn−1xd(sinx)=cosn−1xsinx−∫sinxd(cosn−1x)=cosn−1xsinx+(n−1)∫sin2xcosn−2xdx=cosn−1xsinx+(n−1)∫(1−cos2x)cosn−2xdx=cosn−1xsinx+(n−1)∫cosn−2xdx−(n−1)∫cosnxdx=cosn−1xsinx+(n−1)∫cosn−2xdx−(n−1)I
Solve for II, we get I=1ncosn−1xsinx+n−1n∫cosn−2xdx.I=1ncosn−1xsinx+n−1n∫cosn−2xdx.
Therefor, ∫cosnxdx=1ncosn−1xsinx+n−1n∫cosn−2xdx.∫cosnxdx=1ncosn−1xsinx+n−1n∫cosn−2xdx.
Exercise 8.11 Evaluate the integral.
∫sin2xcos3xdx∫sin2xcos3xdx
Solution.
Since not both cosxcosx has an odd power, we may use the substitution t=sinxt=sinx and the Pythagorean identity sin2x+cos2=1sin2x+cos2=1 to change the integrand into a polynomial of tt. ∫sin2xcos3xdx=∫sin2xcos2xd(sinx)=∫t2(1−t2)dtt=sinx=∫t2−t4dt=t33−t55+C=sin3x3−sin5x5+C∫sin2xcos3xdx=∫sin2xcos2xd(sinx)=∫t2(1−t2)dtt=sinx=∫t2−t4dt=t33−t55+C=sin3x3−sin5x5+C
Exercise 8.12 Evaluate the integral.
∫2π0sin2(13x)dx∫2π0sin2(13x)dx
Solution.
Again, we first find the indefinite integral.
We use the double angle formula to reduce the power of the trigonometric function in the integrand.
∫sin2(13x)dx=12∫(1−cos(23x))dx=x2−12∫cos(23x)dx=x2−34∫cos(t)dtt=23x=x2−34sint+C=x2−34sin(23x)+C∫sin2(13x)dx=12∫(1−cos(23x))dx=x2−12∫cos(23x)dx=x2−34∫cos(t)dtt=23x=x2−34sint+C=x2−34sin(23x)+C
By FTC, ∫2π0sin2(13x)dx=π−34sin(4π3)=π+3√38∫2π0sin2(13x)dx=π−34sin(4π3)=π+3√38
`
Exercise 8.13 Evaluate the integral.
∫sin2xcos4xdx∫sin2xcos4xdx
Solution.
We use trigonometric identities to reduce the power in the integrand. sin2xcos4x=(sinxcosx)2cos2x=14(sin(2x)cosx)2=116(sin(3x)+sinx)2=116(sin2(3x)+2sin3xsinx+sin2x)=116(12(1−cos6x)+cos(2x)−cos(4x)+12(1−cos2x))=116−132cos6x+132cos(2x)−116cos(4x)sin2xcos4x=(sinxcosx)2cos2x=14(sin(2x)cosx)2=116(sin(3x)+sinx)2=116(sin2(3x)+2sin3xsinx+sin2x)=116(12(1−cos6x)+cos(2x)−cos(4x)+12(1−cos2x))=116−132cos6x+132cos(2x)−116cos(4x)
Then the integral is ∫sin2xcos4xdx=∫(116−132cos6x+132cos(2x)−116cos(4x))dx=x16+164sin2x−164sin4x−1192sin6x+C∫sin2xcos4xdx=∫(116−132cos6x+132cos(2x)−116cos(4x))dx=x16+164sin2x−164sin4x−1192sin6x+C
Remark: Note that sin2xcos4x=(1−cos2x)cos4x=cos4x−cos6xsin2xcos4x=(1−cos2x)cos4x=cos4x−cos6x. So we may evaluate the integral using the formula (n>0n>0) ∫cosnxdx=1nsinxcosn−1x−n−1n∫cosn−2xdx∫cosnxdx=1nsinxcosn−1x−n−1n∫cosn−2xdx which is obtain via integration by parts.
Exercise 8.14 Evaluate the integral.
∫tanxsec3xdx∫tanxsec3xdx
Solution.
Note that d(secx)=(tanxsecx)dxd(secx)=(tanxsecx)dx. Let t=secxt=secx. Then ∫tanxsec3xdx=∫t2dtt=secx=t33+C=sec3x3+C∫tanxsec3xdx=∫t2dtt=secx=t33+C=sec3x3+C
Exercise 8.15 Evaluate the integral.
∫π/40sec4xtan4xdx∫π/40sec4xtan4xdx
Solution.
Let t=tanxt=tanx. Then dt=sec2xdxdt=sec2xdx. Using the Pythagorean identity 1+tan2x=sec2x1+tan2x=sec2x, we get ∫sec4xtan4xdx=∫(1+t2)t2dt=∫(t2+t4)dt=t33+t44+C=tan3x3+tan4x4+C∫sec4xtan4xdx=∫(1+t2)t2dt=∫(t2+t4)dt=t33+t44+C=tan3x3+tan4x4+C
By FTC, ∫π/40sec4xtan4xdx=tan3(π/4)3+tan4(π/4)4=13+14=712.∫π/40sec4xtan4xdx=tan3(π/4)3+tan4(π/4)4=13+14=712.
Exercise 8.16 Evaluate the integral.
∫tan5xdx∫tan5xdx
Solution.
One way to evaluate the integral is to rewrite tan5x=sin5xcos5xtan5x=sin5xcos5x and then substitute t=cosxt=cosx.
Another way is to use the identity tan2x=1−sec2xtan2x=1−sec2x and ddxtanx=sec2ddxtanx=sec2 to deduce a reduction formula. ∫tan5xdx=∫tan3x(sec2x−1)dx=∫(tan3xsec2x−tan3x)dx=∫tan3xsec2xdx−∫tan3xdx=∫t3dt−∫tan3xdxt=tanx=t44−∫tanx(sec2x−1)dx=tan4x4−∫tanxsec2xdx+∫tanxdx=tan4x4−tan2x2−ln|cosx|+C.∫tan5xdx=∫tan3x(sec2x−1)dx=∫(tan3xsec2x−tan3x)dx=∫tan3xsec2xdx−∫tan3xdx=∫t3dt−∫tan3xdxt=tanx=t44−∫tanx(sec2x−1)dx=tan4x4−∫tanxsec2xdx+∫tanxdx=tan4x4−tan2x2−ln|cosx|+C.
Remark: In general (n≠1n≠1), we have ∫tannxdx=1n−1tann−1x−∫tann−2xdx∫tannxdx=1n−1tann−1x−∫tann−2xdx
Exercise 8.17 Evaluate the integral.
∫xsecxtanxdx∫xsecxtanxdx
Solution.
Let f(x)=xf(x)=x and g′(x)=secxtanxg′(x)=secxtanx. Then g(x)=secxg(x)=secx. By integration by parts, we have ∫xsecxtanxdx=xsecx−∫secxdx=xsecx−ln|secx+tanx|+C.∫xsecxtanxdx=xsecx−∫secxdx=xsecx−ln|secx+tanx|+C.
Exercise 8.18 Evaluate the integral.
∫sin5xsinxdx∫sin5xsinxdx
Solution.
Using the sum of angles formula for cosine, we have ∫sin5xsinxdx=12∫(cos4x−cos6x)dx=18sin4x−112sin6x+C.∫sin5xsinxdx=12∫(cos4x−cos6x)dx=18sin4x−112sin6x+C.
8.2 Trigonometric Substitution
When having √a2−b2x2√a2−b2x2, √a2+b2x2√a2+b2x2 or √b2x2−a2√b2x2−a2, we consider trigonometric substitution.
Assume that aa and bb are both positive. Then we have the following table of substitutions and transformations.
| Expression | Substitution | Transformation |
|---|---|---|
| √a2−b2x2√a2−b2x2 | x=absinθ,−π2≤θ≤π2x=absinθ,−π2≤θ≤π2 | √a2−b2x2=acos(θ)√a2−b2x2=acos(θ) |
| √a2+b2x2√a2+b2x2 | x=abtanθ,−π2<θ<π2x=abtanθ,−π2<θ<π2 | √a2+b2x2=asec(θ)√a2+b2x2=asec(θ) |
| √b2x2−a2√b2x2−a2 | x=absecθ,0≤θ<π2 or π≤θ<3π2x=absecθ,0≤θ<π2 or π≤θ<3π2 | √b2x2−a2=atan(θ)√b2x2−a2=atan(θ) |
Exercise 8.19 Evaluate the integral.
∫x2√9−x2dx∫x2√9−x2dx
Solution.
Let x=3sintx=3sint with −π/2<t<π/2−π/2<t<π/2.
Then ∫x2√9−x2dx=∫9sin2t3cost3costdt=∫9sin2tdt=92∫(1−cos2t)dt=92t−94sin2t+C=92arcsin(x3)−12x√9−x2+C∫x2√9−x2dx=∫9sin2t3cost3costdt=∫9sin2tdt=92∫(1−cos2t)dt=92t−94sin2t+C=92arcsin(x3)−12x√9−x2+C
Exercise 8.20 Evaluate the integral.
∫a0dx(a2+x2)3/2,a>0∫a0dx(a2+x2)3/2,a>0
Solution.
Let x=atantx=atant with −π/2<t<π/2−π/2<t<π/2. Then dx=asec2tdtdx=asec2tdt and (a2+x2)3/2=(asect)3(a2+x2)3/2=(asect)3.
Then ∫dx(a2+x2)3/2=∫asec2tdta3sec3t=∫costdta2=sinta2+C=1a2√x2a2+x2+C∫dx(a2+x2)3/2=∫asec2tdta3sec3t=∫costdta2=sinta2+C=1a2√x2a2+x2+C
Remark: Since tant=xatant=xa, then sec2t=1+x2a2sec2t=1+x2a2 and cos2t=a2a2+x2cos2t=a2a2+x2. So sint=√1−cos2t=√x2a2+x2sint=√1−cos2t=√x2a2+x2.
By FTC, ∫a0dx(a2+x2)3/2=1a2√a2a2+a2=√22a2.∫a0dx(a2+x2)3/2=1a2√a2a2+a2=√22a2.
Exercise 8.21 Evaluate the integral.
∫32dx(x2−1)3/2∫32dx(x2−1)3/2
Solution.
Let x=sectx=sect with 0<t<π/20<t<π/2 or π<t<3π/2π<t<3π/2. Then dx=secttantdtdx=secttantdt and (x2−1)3/2=tan3t(x2−1)3/2=tan3t.
Then ∫dx(x2−1)3/2=∫secttantdttan3t=∫costdtsin2t=−1sint+C=x√x2−1+C∫dx(x2−1)3/2=∫secttantdttan3t=∫costdtsin2t=−1sint+C=x√x2−1+C
Remark: Here we used the identities sint=√1−cos2t=√1−1sec2t=√1−1x2sint=√1−cos2t=√1−1sec2t=√1−1x2.
By FTC, ∫32dx(x2−1)3/2=3√92−1−2√22−1=8√3−9√212.∫32dx(x2−1)3/2=3√92−1−2√22−1=8√3−9√212.
Exercise 8.22 Evaluate the integral.
∫dx√x2+2x+5∫dx√x2+2x+5
Solution.
By completing the square, we may rewrite x2+2x+5=1+(x+1)2x2+2x+5=1+(x+1)2. Let x+1=sectx+1=sect. Then dx=secttantdtdx=secttantdt and √x2+2x+5=tant√x2+2x+5=tant. Therefore, ∫dx√x2+2x+5=∫secttantdttant=∫sectdt=ln|sect+tant|+C=ln|x+1+√1−(x+1)2|+C∫dx√x2+2x+5=∫secttantdttant=∫sectdt=ln|sect+tant|+C=ln|x+1+√1−(x+1)2|+C
Exercise 8.23 Evaluate the integral.
∫x√1−x4dx∫x√1−x4dx
Solution.
Let x2=sintx2=sint, then 2xdx=costdt2xdx=costdt and √1−x4=cost√1−x4=cost. Then ∫x√1−x4dx=12∫cos2tdt=14∫(1+cos2t)dt=14t+18sin2t+C=14arcsin(x2)+12x2√1−x4+C∫x√1−x4dx=12∫cos2tdt=14∫(1+cos2t)dt=14t+18sin2t+C=14arcsin(x2)+12x2√1−x4+C
Remark: Instead of substitute x2x2 by sintsint, you may use substitution twice, u=x2u=x2, u=sintu=sint.
Exercise 8.24 Evaluate the integral.
∫π/20cosx√1+sin2xdx∫π/20cosx√1+sin2xdx
Solution.
Let sinx=tantsinx=tant. Then cosxdx=sec2tdtcosxdx=sec2tdt and √1+sin2x=√1+tan2t=sect√1+sin2x=√1+tan2t=sect. Therefore, ∫cosx√1+sin2xdx=∫sec2tdtsect=∫sectdt=ln|sect+tant|+C=ln|sinx+√1+sin2x|+C∫cosx√1+sin2xdx=∫sec2tdtsect=∫sectdt=ln|sect+tant|+C=ln|sinx+√1+sin2x|+C
By FTC, ∫π/20cosx√1+sin2xdx=ln|1+√1+1|−0=ln(1+√2)∫π/20cosx√1+sin2xdx=ln|1+√1+1|−0=ln(1+√2)
Remark: Instead of the substitution sinx=tantsinx=tant, you may first set u=sinxu=sinx and then set u=tantu=tant.
8.3 Integrations of Rational Functions by Partial Fractions
In Algebra, there is a theorem called the Fundamental Theorem of Algebra which implies that for rational function P(x)/Q(x)P(x)/Q(x) can be written as a sum of partial fractions of the form A(ax+b)i or Ax+B(ax2+bx+c)j,A(ax+b)i or Ax+B(ax2+bx+c)j, where ax2+bx+cax2+bx+c is a irreducible quadratic form, that is the equation ax2+bx+c=0ax2+bx+c=0 has no real roots.
After rewriting the rational function into a sum of partial fractions, we may use substitution methods to find the integral.
Exercise 8.25 Write out the form of the partial fraction decomposition of the function. Do not determine the numerical values of the coefficients.
x2−2x3+2x2+xx2−2x3+2x2+x
Solution.
The denominator can be factor into x(x+1)2x(x+1)2. Then the sum of partial fractions for the rational function can be written in the following form x2−2x3+2x2+x=Ax+Bx+1+C(x+1)2.x2−2x3+2x2+x=Ax+Bx+1+C(x+1)2.
Remark: To determine the values of coefficients, we clear the denominator first. From here, there are two ways you may try.
Method one: substitute xx by the roots of the GCD and/or special numbers and then solve for the undetermined coefficients.
Method two: simplify both sides and get system of equations of the undetermined coefficients by comparing coefficients of polynomials in both sides.
Exercise 8.26 Write out the form of the partial fraction decomposition of the function. Do not determine the numerical values of the coefficients.
x4(x2−x+1)(x2+2)2x4(x2−x+1)(x2+2)2
Solution.
Since the denominators has irreducible quadratic functions, the partial fraction form for the rational function can be written as
x4(x2−x+1)(x2+2)2=A1x+B1x2−x+1+A2x+B2x2+2+A3x+C3(x2+2)2.x4(x2−x+1)(x2+2)2=A1x+B1x2−x+1+A2x+B2x2+2+A3x+C3(x2+2)2.
Remark: Although an irreducible quadratic form has no real roots, it has complex roots. One may also substitute xx by a complex root to solve of the undetermined coefficients.
Exercise 8.27 Evaluate the integral ∫5x+1(2x+1)(x−1)dx∫5x+1(2x+1)(x−1)dx
Solution.
We first write the rational function in the partial fraction form 5x+1(2x+1)(x−1)=A2x+1+Bx−1.5x+1(2x+1)(x−1)=A2x+1+Bx−1.
Clear the denominators, we have 5x+1=A(x−1)+B(2x+1).5x+1=A(x−1)+B(2x+1).
Let x=1x=1, we get 6=3B6=3B. So B=2B=2.
Let x=−12x=−12, we get −52+1=A(−12−1)−52+1=A(−12−1). So A=1A=1.
Then the integral is ∫5x+1(2x+1)(x−1)dx=∫12x+1dx+∫2x−1dx=12ln|2x+1|+2ln|x−1|+C.∫5x+1(2x+1)(x−1)dx=∫12x+1dx+∫2x−1dx=12ln|2x+1|+2ln|x−1|+C.
Exercise 8.28 Evaluate the integral
∫1022x2+3x+1dx∫1022x2+3x+1dx
Solution.
The denominator can be factored into (2x+1)(x+1)(2x+1)(x+1).
Write the rational function in the partial fraction form 22x2+3x+1=A2x+1+Bx+1.22x2+3x+1=A2x+1+Bx+1.
Clear the denominators, we have 2=A(x+1)+B(2x+1).2=A(x+1)+B(2x+1).
Let x=−1x=−1, we get 2=−B2=−B. So B=−2B=−2.
Let x=−12x=−12, we get 2=A(−12+1)2=A(−12+1). So A=4A=4.
Then the indefinite integral is ∫2(2x+1)(x+1)dx=∫42x+1dx+∫−2x−1dx=2ln|2x+1|−2ln|x+1|+C.∫2(2x+1)(x+1)dx=∫42x+1dx+∫−2x−1dx=2ln|2x+1|−2ln|x+1|+C.
By FTC, ∫1022x2+3x+1dx=2ln3−2ln2=ln(94).∫1022x2+3x+1dx=2ln3−2ln2=ln(94).
Exercise 8.29 Evaluate the integral
∫10x2+x+1(x+1)2(x+2)dx∫10x2+x+1(x+1)2(x+2)dx
Solution.
Write the rational function in the partial fraction form x2+x+1(x+1)2(x+2)=Ax+2+Bx+1+C(x+1)2.x2+x+1(x+1)2(x+2)=Ax+2+Bx+1+C(x+1)2.
Clear the denominators, we have x2+x+1=A(x+1)2+B(x+1)(x+2)+C(x+2).x2+x+1=A(x+1)2+B(x+1)(x+2)+C(x+2).
Let x=−1x=−1, we get 1=C1=C.
Let x=−2x=−2, we get 3=A3=A.
Comparing coefficients of degree two terms in both sides, we get 1=A+B1=A+B. So B=−2B=−2.
Then the indefinite integral is ∫x2+x+1(x+1)2(x+2)dx=∫3x+2dx+∫−2x+1dx+∫1(x+1)2dx=3ln|x+2|−2ln|x+1|−1x+1+C.∫x2+x+1(x+1)2(x+2)dx=∫3x+2dx+∫−2x+1dx+∫1(x+1)2dx=3ln|x+2|−2ln|x+1|−1x+1+C.
By FTC, ∫1022x2+3x+1dx=(3ln3−2ln2−12)−(3ln2−2ln1−1)=12+ln(2732).∫1022x2+3x+1dx=(3ln3−2ln2−12)−(3ln2−2ln1−1)=12+ln(2732).
Exercise 8.30 Evaluate the integral
∫x2−x+6x3+3xdx∫x2−x+6x3+3xdx
Solution.
The denominator can be factored into x(x2+3)x(x2+3).
We may write the rational function in the partial fraction form x2−x+6x3+3x=Ax+Bx+Cx2+3.x2−x+6x3+3x=Ax+Bx+Cx2+3.
Clear the denominators, we have x2−x+6=A(x2+3)+Bx2+Cx.x2−x+6=A(x2+3)+Bx2+Cx.
Let x=0x=0. We find A=2A=2. Let x=i√3x=i√3, we get x2=−3x2=−3 and −3−i√3+6=−3B+i√3C.−3−i√3+6=−3B+i√3C. Since BB and CC are real numbers, 3=−3B3=−3B and −i√3=i√3C−i√3=i√3C. So B=−1B=−1 and C=−1C=−1.
Then the indefinite integral is ∫x2−x+6x3+3xdx=∫2xdx−∫xx2+3dx−∫1x2+3dx=2ln|x|−12ln(x2+3)−√33arctan(x√3)+C=ln(x2√x3+3)−√33arctan(x√3)+C.∫x2−x+6x3+3xdx=∫2xdx−∫xx2+3dx−∫1x2+3dx=2ln|x|−12ln(x2+3)−√33arctan(x√3)+C=ln(x2√x3+3)−√33arctan(x√3)+C.
Exercise 8.31 Evaluate the integral
∫x2+x+1(x2+1)2dx∫x2+x+1(x2+1)2dx
Solution.
The rational function can be written in the partial fraction form x2+x+1(x2+1)2=x2+1(x2+1)2+x(x2+1)2=1x2+1+x(x2+1)2.x2+x+1(x2+1)2=x2+1(x2+1)2+x(x2+1)2=1x2+1+x(x2+1)2.
Clear the denominators, we have x2+x+1=(Ax+B)(x2+1)+Cx+D.x2+x+1=(Ax+B)(x2+1)+Cx+D.
By comparing the top degree terms, we find that A=0A=0. So the equality become x2+x+1=B(x2+1)+Cx+D.x2+x+1=B(x2+1)+Cx+D. Comparing the same degree terms, we find B=1B=1, C=1C=1 and 1=B+D1=B+D which implies D=0D=0. –>
Therefore, ∫x2+x+1(x2+1)2dx=∫1x2+1dx+∫x(x2+1)2dx=arctanx−12(x2+1)+C.∫x2+x+1(x2+1)2dx=∫1x2+1dx+∫x(x2+1)2dx=arctanx−12(x2+1)+C.
Exercise 8.32 Evaluate the integral
∫x3+6x−2x4+6x2dx∫x3+6x−2x4+6x2dx
Solution.
The rational function can be written in the partial fraction form x3+6x−2x4+6x2=Ax+Bx2+Cx+Dx2+6.x3+6x−2x4+6x2=Ax+Bx2+Cx+Dx2+6.
Clear the denominators, we have x3+6x−2=Ax(x2+6)+B(x2+6)+Cx3+Dx2.x3+6x−2=Ax(x2+6)+B(x2+6)+Cx3+Dx2.
Let x=0x=0. We find B=−13B=−13.
Let x=i√6x=i√6. Then x2=−6x2=−6, x3=−6√6 ix3=−6√6 i and −2=−6√6C i−6D.−2=−6√6C i−6D. As CC and DD are real numbers, we must have C=0C=0 and D=13D=13.
Comparing degree 3 terms, we find A=1A=1.
Therefore, ∫x3+6x−2x4+6x2dx=∫1xdx+∫−13x2dx+∫13x2+6dx=ln|x|+13x+√618arctan(x√6)+C.∫x3+6x−2x4+6x2dx=∫1xdx+∫−13x2dx+∫13x2+6dx=ln|x|+13x+√618arctan(x√6)+C.
Exercise 8.33 Evaluate the integral
∫dxx√x−1∫dxx√x−1
Solution.
Although the integrand is note a rational function, we may apply a linear substitution u=√x−1u=√x−1 to rewrite the integral as ∫dxx√x−1=∫2uduu(u2+1)∫dxx√x−1=∫2uduu(u2+1)
Simplify and evaluate the resulting integral, we get ∫dxx√x−1=2arctan(√x−1)+C.∫dxx√x−1=2arctan(√x−1)+C.
Exercise 8.34 Evaluate the integral
∫sinxcos2x−3cosxdx∫sinxcos2x−3cosxdx
Solution.
Let u=cosxu=cosx. Then ∫sinxcos2x−3cosxdx=∫−dxx2−3x=13∫(1x−1x−3)dx=13(ln|x|−ln|x−3|)+C=13(ln|cosx|−ln|cosx−3|)+C.∫sinxcos2x−3cosxdx=∫−dxx2−3x=13∫(1x−1x−3)dx=13(ln|x|−ln|x−3|)+C=13(ln|cosx|−ln|cosx−3|)+C.
8.4 Improper Integrals
8.4.1 Infinite Intervals
Definition 8.1 Suppose the integral ∫taf(x)dx∫taf(x)dx exists for any tt.
Then ∫∞af(x)dx=limt→∞∫taf(x)dx,∫∞af(x)dx=limt→∞∫taf(x)dx, and ∫a−∞f(x)dx=limt→−∞∫atf(x)dx.∫a−∞f(x)dx=limt→−∞∫atf(x)dx.
An improper integral is called convergent if the corresponding limit exists and divergent if the limit does not exist.
If both ∫∞af(x)dx∫∞af(x)dx and ∫a−∞f(x)dx∫a−∞f(x)dx are convergent, then ∫∞−∞f(x)dx=∫∞af(x)dx+∫a−∞f(x)dx.∫∞−∞f(x)dx=∫∞af(x)dx+∫a−∞f(x)dx.
Exercise 8.35 Determine whether the integral is convergent or divergent. Evaluate the integral if it is convergent. ∫∞014√1+xdx∫∞014√1+xdx
Solution.
We first find the indefinite integral. ∫14√1+xdx=∫u−14duu=x+1=43u34+C=43(1+x)34+C.∫14√1+xdx=∫u−14duu=x+1=43u34+C=43(1+x)34+C.
Then limt→∞∫t014√1+xdx=limt→∞(43(1+t)34−43)=∞.limt→∞∫t014√1+xdx=limt→∞(43(1+t)34−43)=∞.
By definition, ∫∞014√1+xdx=limt→∞∫t014√1+xdx=∞∫∞014√1+xdx=limt→∞∫t014√1+xdx=∞ is divergent.
Exercise 8.36 Determine whether the integral is convergent or divergent. Evaluate the integral if it is convergent. ∫0−∞2xdx∫0−∞2xdx
Solution.
We first find the indefinite integral. ∫2xdx=2xln2+C∫2xdx=2xln2+C
Then limt→−∞∫0t2xdx=limt→∞(1ln2−2xln2)=1ln2.limt→−∞∫0t2xdx=limt→∞(1ln2−2xln2)=1ln2.
By definition, ∫∞014√1+xdx=limt→∞∫t014√1+xdx=1ln2.∫∞014√1+xdx=limt→∞∫t014√1+xdx=1ln2.
Exercise 8.37 Determine whether the integral is convergent or divergent. Evaluate the integral if it is convergent. ∫∞−∞x29+x6dx∫∞−∞x29+x6dx
Solution.
We first find the indefinite integral. ∫x29+x6dx=19∫11+u2du3u=x3=19arctanu+C=19arctan(x33)+C∫x29+x6dx=19∫11+u2du3u=x3=19arctanu+C=19arctan(x33)+C
Then limt→−∞∫0t19arctan(x33)=limt→−∞−19arctan(t33)=π18limt→−∞∫0t19arctan(x33)=limt→−∞−19arctan(t33)=π18 and limt→∞∫t019arctan(x33)=limt→∞19arctan(t33)=π18.limt→∞∫t019arctan(x33)=limt→∞19arctan(t33)=π18.
By definition, ∫∞−∞x29+x6dx=π18+π18=π9.∫∞−∞x29+x6dx=π18+π18=π9.
Exercise 8.38 Determine whether the integral is convergent or divergent. Evaluate the integral if it is convergent. ∫∞2xe−3xdx∫∞2xe−3xdx
Solution.
We first find the indefinite integral. ∫xe−3xdx=∫x(e−3x−3)′dx=−13(xe−3x−∫e−3xdx)=−13(xe−3x+13e−3x)+C=−13xe−3x−19e−3x+C∫xe−3xdx=∫x(e−3x−3)′dx=−13(xe−3x−∫e−3xdx)=−13(xe−3x+13e−3x)+C=−13xe−3x−19e−3x+C
Then ∫∞2xe−3xdx=limt→−∞[(−13te−3t−19e−3t)−(−132e−6−19e−6)]=79e−6−13limt→−∞te−3t=79e−6by L'Hospital's rule∫∞2xe−3xdx=limt→−∞[(−13te−3t−19e−3t)−(−132e−6−19e−6)]=79e−6−13limt→−∞te−3t=79e−6by L'Hospital's rule
8.4.2 Discountinuous Integrands
Definition 8.2 Suppose the function ff is continuous on [a,b)[a,b) but discontinuous at bb. Then ∫baf(x)dx=limt→b−∫taf(x)dx.∫baf(x)dx=limt→b−∫taf(x)dx.
Suppose the function ff is continuous on (a,b](a,b] but discontinuous at aa. Then ∫baf(x)dx=limt→a+∫btf(x)dx.∫baf(x)dx=limt→a+∫btf(x)dx.
An improper integral is called convergent if the corresponding limit exists and divergent if the limit does not exist.
If ff has a discontinuity cc within the interval (a,b)(a,b) and both ∫caf(x)dx∫caf(x)dx and ∫bcf(x)dx∫bcf(x)dx are convergent, then ∫baf(x)dx=∫caf(x)dx+∫bcf(x)dx∫baf(x)dx=∫caf(x)dx+∫bcf(x)dx
Exercise 8.39 Determine whether the integral is convergent or divergent. Evaluate the integral if it is convergent.
∫321√3−xdx∫321√3−xdx
Solution.
We first find the indefinite integral. ∫1√3−xdx=−∫u−12duu=3−x=−2√u+C=−2√3−x+C∫1√3−xdx=−∫u−12duu=3−x=−2√u+C=−2√3−x+C
Then ∫321√3−xdx=limt→3−∫t21√3−x=limt→3−(−2√3−t+2)=2∫321√3−xdx=limt→3−∫t21√3−x=limt→3−(−2√3−t+2)=2
Exercise 8.40 Determine whether the integral is convergent or divergent. Evaluate the integral if it is convergent.
∫10lnx√xdx∫10lnx√xdx
Solution.
We first find the indefinite integral. ∫lnx√xdx=2∫ln(u2)duu=√x=4∫lnudu=4(ulnu−u)+C=2√xlnx−4√x+C.∫lnx√xdx=2∫ln(u2)duu=√x=4∫lnudu=4(ulnu−u)+C=2√xlnx−4√x+C.
Then ∫10lnx√xdx=limt→0+∫1tlnx√xdx=−4−limt→0+(2√tlnt−4√t)=−4−limt→0+(2√tlnt)=−4−2limt→0+(lnt)′(1√t)′L'Hospitcal's rule=−4−2⋅0=−4.∫10lnx√xdx=limt→0+∫1tlnx√xdx=−4−limt→0+(2√tlnt−4√t)=−4−limt→0+(2√tlnt)=−4−2limt→0+(lnt)′(1√t)′L'Hospitcal's rule=−4−2⋅0=−4.
Exercise 8.41 Determine whether the integral is convergent or divergent. Evaluate the integral if it is convergent.
∫50xx−2dx∫50xx−2dx
Solution.
We first find the indefinite integral. ∫xx−2dx=∫(1+2x−2)dx=x+2ln|x−2|.∫xx−2dx=∫(1+2x−2)dx=x+2ln|x−2|.
Since limt→2+ln(t−2)=−∞limt→2+ln(t−2)=−∞, limt→2+∫5txx−2dx=5+2ln3−limt→2+(t+2ln(t−2))=−∞.limt→2+∫5txx−2dx=5+2ln3−limt→2+(t+2ln(t−2))=−∞.
Therefore, the given improper integral is divergent.
Exercise 8.42 Determine whether the integral is convergent or divergent. Evaluate the integral if it is convergent.
∫30dxx2−6x+5∫30dxx2−6x+5
Solution.
We first find the indefinite integral by partial fractions. ∫dxx2−6x+5=∫−14x−1+14x−5dx=−14∫1x−1−1x−5dx=−14(ln|x−1|−ln|x−5|)+C.∫dxx2−6x+5=∫−14x−1+14x−5dx=−14∫1x−1−1x−5dx=−14(ln|x−1|−ln|x−5|)+C.
Since limt→1+ln(t−1)=−∞limt→1+ln(t−1)=−∞, similar to the previous question, the given improper integral is divergent.
8.4.3 Comparison Test
Theorem 8.1 Suppose ff and gg are continuos functions and f(x)≥g(x)≥0f(x)≥g(x)≥0 for all x≥ax≥a.
If ∫∞af(x)dx∫∞af(x)dx is convergent, then ∫∞ag(x)dx∫∞ag(x)dx is convergent.
If ∫∞ag(x)dx∫∞ag(x)dx is divergent, then ∫∞af(x)dx∫∞af(x)dx is divergent.
The same conclusion holds true for improper integrals of functions with discontinuities.
We have the following results. ∫∞11xpdx is convergent if p>1 and divergent if p≤1∫∞11xpdx is convergent if p>1 and divergent if p≤1
∫∞11ekxdx is convergent if k>0 and divergent if k<0.∫∞11ekxdx is convergent if k>0 and divergent if k<0.
Exercise 8.43 Determine whether the integral is convergent or divergent.
∫∞0sin2x1+x2dx∫∞0sin2x1+x2dx
Solution.
We know that ∫∞011+x2dx=limt→∞∫t011+x2dx=limt→∞arctant=π2.∫∞011+x2dx=limt→∞∫t011+x2dx=limt→∞arctant=π2.
Since 0≤sin2x≤10≤sin2x≤1, by comparison theorem, the integral is convergent.
Exercise 8.44 Determine whether the integral is convergent or divergent.
∫∞0arctanx2+exdx∫∞0arctanx2+exdx
Solution.
We know that ∫∞01exdx=limt→∞∫t0e−xdx=limt→∞−et+1=1.∫∞01exdx=limt→∞∫t0e−xdx=limt→∞−et+1=1.
Since 0≤arctanx2+ex≤π21ex,0≤arctanx2+ex≤π21ex, by comparison theorem, the integral is convergent.